Constraint Qualification with Schauder Basis for Infinite Programming Problems

We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2023-10, Vol.88 (2), p.66, Article 66
Hauptverfasser: Bednarczuk, E. M., Leśniewski, K. W., Rutkowski, K. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 66
container_title Applied mathematics & optimization
container_volume 88
creator Bednarczuk, E. M.
Leśniewski, K. W.
Rutkowski, K. E.
description We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.
doi_str_mv 10.1007/s00245-023-10034-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2849176313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849176313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-25e2ea60d8d9e5ead9160d706998ec6f57e9ba624d72f121773f07a5e0887b883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2U2yRy1-FIofqOeQ7iZtSjepyS7ivzd1BW-eZgae9x14EDoncEkAxFUCoGWFgTKcb1ZiOEATUjKKgQM_RBOAusIlJ_wYnaS0gcwzzibocRZ86qN2vi9eBr111jW6d8EXn65fF6_NWg-ticWNTi4VNsRi7q3zrjfFcwyrqLvO-dV-X25Nl07RkdXbZM5-5xS9392-zR7w4ul-Prte4IaRsse0MtRoDq1sa1MZ3dYkHwJ4XUvTcFsJUy81p2UrqCWUCMEsCF0ZkFIspWRTdDH27mL4GEzq1SYM0eeXisqyJoIzwjJFR6qJIaVorNpF1-n4pQiovTc1elNZhvrxpiCH2BhKGfYrE_-q_0l9Awcib-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849176313</pqid></control><display><type>article</type><title>Constraint Qualification with Schauder Basis for Infinite Programming Problems</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Bednarczuk, E. M. ; Leśniewski, K. W. ; Rutkowski, K. E.</creator><creatorcontrib>Bednarczuk, E. M. ; Leśniewski, K. W. ; Rutkowski, K. E.</creatorcontrib><description>We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-023-10034-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Banach spaces ; Calculus of Variations and Optimal Control; Optimization ; Control ; Lagrange multiplier ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Optimization ; Simulation ; Systems Theory ; Theorems ; Theoretical</subject><ispartof>Applied mathematics &amp; optimization, 2023-10, Vol.88 (2), p.66, Article 66</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-25e2ea60d8d9e5ead9160d706998ec6f57e9ba624d72f121773f07a5e0887b883</cites><orcidid>0000-0002-2626-2469 ; 0000-0003-1587-1928 ; 0000-0003-3683-6881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-023-10034-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-023-10034-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Leśniewski, K. W.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><title>Constraint Qualification with Schauder Basis for Infinite Programming Problems</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.</description><subject>Applied mathematics</subject><subject>Banach spaces</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Lagrange multiplier</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2U2yRy1-FIofqOeQ7iZtSjepyS7ivzd1BW-eZgae9x14EDoncEkAxFUCoGWFgTKcb1ZiOEATUjKKgQM_RBOAusIlJ_wYnaS0gcwzzibocRZ86qN2vi9eBr111jW6d8EXn65fF6_NWg-ticWNTi4VNsRi7q3zrjfFcwyrqLvO-dV-X25Nl07RkdXbZM5-5xS9392-zR7w4ul-Prte4IaRsse0MtRoDq1sa1MZ3dYkHwJ4XUvTcFsJUy81p2UrqCWUCMEsCF0ZkFIspWRTdDH27mL4GEzq1SYM0eeXisqyJoIzwjJFR6qJIaVorNpF1-n4pQiovTc1elNZhvrxpiCH2BhKGfYrE_-q_0l9Awcib-4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bednarczuk, E. M.</creator><creator>Leśniewski, K. W.</creator><creator>Rutkowski, K. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2626-2469</orcidid><orcidid>https://orcid.org/0000-0003-1587-1928</orcidid><orcidid>https://orcid.org/0000-0003-3683-6881</orcidid></search><sort><creationdate>20231001</creationdate><title>Constraint Qualification with Schauder Basis for Infinite Programming Problems</title><author>Bednarczuk, E. M. ; Leśniewski, K. W. ; Rutkowski, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-25e2ea60d8d9e5ead9160d706998ec6f57e9ba624d72f121773f07a5e0887b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Banach spaces</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Lagrange multiplier</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Leśniewski, K. W.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednarczuk, E. M.</au><au>Leśniewski, K. W.</au><au>Rutkowski, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint Qualification with Schauder Basis for Infinite Programming Problems</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>88</volume><issue>2</issue><spage>66</spage><pages>66-</pages><artnum>66</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-023-10034-0</doi><orcidid>https://orcid.org/0000-0002-2626-2469</orcidid><orcidid>https://orcid.org/0000-0003-1587-1928</orcidid><orcidid>https://orcid.org/0000-0003-3683-6881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2023-10, Vol.88 (2), p.66, Article 66
issn 0095-4616
1432-0606
language eng
recordid cdi_proquest_journals_2849176313
source Business Source Complete; Springer Nature - Complete Springer Journals
subjects Applied mathematics
Banach spaces
Calculus of Variations and Optimal Control
Optimization
Control
Lagrange multiplier
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Optimization
Simulation
Systems Theory
Theorems
Theoretical
title Constraint Qualification with Schauder Basis for Infinite Programming Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint%20Qualification%20with%20Schauder%20Basis%20for%20Infinite%20Programming%20Problems&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Bednarczuk,%20E.%20M.&rft.date=2023-10-01&rft.volume=88&rft.issue=2&rft.spage=66&rft.pages=66-&rft.artnum=66&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-023-10034-0&rft_dat=%3Cproquest_cross%3E2849176313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849176313&rft_id=info:pmid/&rfr_iscdi=true