Constraint Qualification with Schauder Basis for Infinite Programming Problems
We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a give...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2023-10, Vol.88 (2), p.66, Article 66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 66 |
container_title | Applied mathematics & optimization |
container_volume | 88 |
creator | Bednarczuk, E. M. Leśniewski, K. W. Rutkowski, K. E. |
description | We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem. |
doi_str_mv | 10.1007/s00245-023-10034-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2849176313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849176313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-25e2ea60d8d9e5ead9160d706998ec6f57e9ba624d72f121773f07a5e0887b883</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2U2yRy1-FIofqOeQ7iZtSjepyS7ivzd1BW-eZgae9x14EDoncEkAxFUCoGWFgTKcb1ZiOEATUjKKgQM_RBOAusIlJ_wYnaS0gcwzzibocRZ86qN2vi9eBr111jW6d8EXn65fF6_NWg-ticWNTi4VNsRi7q3zrjfFcwyrqLvO-dV-X25Nl07RkdXbZM5-5xS9392-zR7w4ul-Prte4IaRsse0MtRoDq1sa1MZ3dYkHwJ4XUvTcFsJUy81p2UrqCWUCMEsCF0ZkFIspWRTdDH27mL4GEzq1SYM0eeXisqyJoIzwjJFR6qJIaVorNpF1-n4pQiovTc1elNZhvrxpiCH2BhKGfYrE_-q_0l9Awcib-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849176313</pqid></control><display><type>article</type><title>Constraint Qualification with Schauder Basis for Infinite Programming Problems</title><source>Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Bednarczuk, E. M. ; Leśniewski, K. W. ; Rutkowski, K. E.</creator><creatorcontrib>Bednarczuk, E. M. ; Leśniewski, K. W. ; Rutkowski, K. E.</creatorcontrib><description>We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-023-10034-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Banach spaces ; Calculus of Variations and Optimal Control; Optimization ; Control ; Lagrange multiplier ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Optimization ; Simulation ; Systems Theory ; Theorems ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2023-10, Vol.88 (2), p.66, Article 66</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-25e2ea60d8d9e5ead9160d706998ec6f57e9ba624d72f121773f07a5e0887b883</cites><orcidid>0000-0002-2626-2469 ; 0000-0003-1587-1928 ; 0000-0003-3683-6881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-023-10034-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-023-10034-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Leśniewski, K. W.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><title>Constraint Qualification with Schauder Basis for Infinite Programming Problems</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.</description><subject>Applied mathematics</subject><subject>Banach spaces</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Lagrange multiplier</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theorems</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-gk2U2yRy1-FIofqOeQ7iZtSjepyS7ivzd1BW-eZgae9x14EDoncEkAxFUCoGWFgTKcb1ZiOEATUjKKgQM_RBOAusIlJ_wYnaS0gcwzzibocRZ86qN2vi9eBr111jW6d8EXn65fF6_NWg-ticWNTi4VNsRi7q3zrjfFcwyrqLvO-dV-X25Nl07RkdXbZM5-5xS9392-zR7w4ul-Prte4IaRsse0MtRoDq1sa1MZ3dYkHwJ4XUvTcFsJUy81p2UrqCWUCMEsCF0ZkFIspWRTdDH27mL4GEzq1SYM0eeXisqyJoIzwjJFR6qJIaVorNpF1-n4pQiovTc1elNZhvrxpiCH2BhKGfYrE_-q_0l9Awcib-4</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Bednarczuk, E. M.</creator><creator>Leśniewski, K. W.</creator><creator>Rutkowski, K. E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2626-2469</orcidid><orcidid>https://orcid.org/0000-0003-1587-1928</orcidid><orcidid>https://orcid.org/0000-0003-3683-6881</orcidid></search><sort><creationdate>20231001</creationdate><title>Constraint Qualification with Schauder Basis for Infinite Programming Problems</title><author>Bednarczuk, E. M. ; Leśniewski, K. W. ; Rutkowski, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-25e2ea60d8d9e5ead9160d706998ec6f57e9ba624d72f121773f07a5e0887b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Banach spaces</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Lagrange multiplier</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theorems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednarczuk, E. M.</creatorcontrib><creatorcontrib>Leśniewski, K. W.</creatorcontrib><creatorcontrib>Rutkowski, K. E.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednarczuk, E. M.</au><au>Leśniewski, K. W.</au><au>Rutkowski, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraint Qualification with Schauder Basis for Infinite Programming Problems</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>88</volume><issue>2</issue><spage>66</spage><pages>66-</pages><artnum>66</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>We consider infinite programming problems with constraint sets defined by systems of infinite number of inequalities and equations given by continuously differentiable functions defined on Banach spaces. In the approach proposed here we represent these systems with the help of coefficients in a given Schauder basis. We prove Abadie constraint qualification under the new infinite-dimensional Relaxed Constant Rank Constraint Qualification Plus and we discuss the existence of Lagrange multipliers via Hurwicz set. The main tools are: Rank Theorem and Lyusternik–Graves theorem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-023-10034-0</doi><orcidid>https://orcid.org/0000-0002-2626-2469</orcidid><orcidid>https://orcid.org/0000-0003-1587-1928</orcidid><orcidid>https://orcid.org/0000-0003-3683-6881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2023-10, Vol.88 (2), p.66, Article 66 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_proquest_journals_2849176313 |
source | Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Applied mathematics Banach spaces Calculus of Variations and Optimal Control Optimization Control Lagrange multiplier Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Optimization Simulation Systems Theory Theorems Theoretical |
title | Constraint Qualification with Schauder Basis for Infinite Programming Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraint%20Qualification%20with%20Schauder%20Basis%20for%20Infinite%20Programming%20Problems&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Bednarczuk,%20E.%20M.&rft.date=2023-10-01&rft.volume=88&rft.issue=2&rft.spage=66&rft.pages=66-&rft.artnum=66&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-023-10034-0&rft_dat=%3Cproquest_cross%3E2849176313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2849176313&rft_id=info:pmid/&rfr_iscdi=true |