Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries

This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2023-10, Vol.61 (19), p.6501-6518
Hauptverfasser: Gupta, Narain, Dutta, Goutam, Mitra, Krishnendranath, Kumar Tiwari, Manoj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6518
container_issue 19
container_start_page 6501
container_title International journal of production research
container_volume 61
creator Gupta, Narain
Dutta, Goutam
Mitra, Krishnendranath
Kumar Tiwari, Manoj
description This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.
doi_str_mv 10.1080/00207543.2022.2131926
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2848593718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848593718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWA-PIAS83prDJpv1SimeoOCNQu9Cms3SyDapmSy1b29KFe8MDBmG75_Dj9AVJVNKFLkhhJFG1HzKCGNTRjltmTxCE8qlrIRSi2M02TPVHjpFZwAfpDyh6gla3Qcz7LK3gLc-rzDkaFcGSgHHTfZrDyb7GG6x-9q45NcuZDPg5GAcMuDY486tTejwGKxL2fiQd9gHvEnROoCSdiPk5B1coJPeDOAuf_5z9P748DZ7ruavTy-z-3lleSty1TvLCbM1oW4p2kaU4JZZSXvSdFQy0yjjlkQIxbhjPVsyUrO2bqU1nenqmp-j60PfssLn6CDrjzimciRopmolWt5QVShxoGyKAMn1elOOM2mnKdF7U_WvqXpvqv4xtejwQedsDB7-VErKhnPJFwW5OyA-9DGtzTamodPZ7IaY-mSCLTL-_5Rvu0yKYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848593718</pqid></control><display><type>article</type><title>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Gupta, Narain ; Dutta, Goutam ; Mitra, Krishnendranath ; Kumar Tiwari, Manoj</creator><creatorcontrib>Gupta, Narain ; Dutta, Goutam ; Mitra, Krishnendranath ; Kumar Tiwari, Manoj</creatorcontrib><description>This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2022.2131926</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Aluminum ; Analytics ; Decision support system ; Decision support systems ; Demand ; Empirical analysis ; EVPI ; Expected values ; iron and steel industry ; Linear programming ; Optimization ; planning with optimisation ; Steel industry ; stochastic programming ; VSS</subject><ispartof>International journal of production research, 2023-10, Vol.61 (19), p.6501-6518</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</citedby><cites>FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2022.2131926$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2022.2131926$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,59636,60425</link.rule.ids></links><search><creatorcontrib>Gupta, Narain</creatorcontrib><creatorcontrib>Dutta, Goutam</creatorcontrib><creatorcontrib>Mitra, Krishnendranath</creatorcontrib><creatorcontrib>Kumar Tiwari, Manoj</creatorcontrib><title>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</title><title>International journal of production research</title><description>This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.</description><subject>Aluminum</subject><subject>Analytics</subject><subject>Decision support system</subject><subject>Decision support systems</subject><subject>Demand</subject><subject>Empirical analysis</subject><subject>EVPI</subject><subject>Expected values</subject><subject>iron and steel industry</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>planning with optimisation</subject><subject>Steel industry</subject><subject>stochastic programming</subject><subject>VSS</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWA-PIAS83prDJpv1SimeoOCNQu9Cms3SyDapmSy1b29KFe8MDBmG75_Dj9AVJVNKFLkhhJFG1HzKCGNTRjltmTxCE8qlrIRSi2M02TPVHjpFZwAfpDyh6gla3Qcz7LK3gLc-rzDkaFcGSgHHTfZrDyb7GG6x-9q45NcuZDPg5GAcMuDY486tTejwGKxL2fiQd9gHvEnROoCSdiPk5B1coJPeDOAuf_5z9P748DZ7ruavTy-z-3lleSty1TvLCbM1oW4p2kaU4JZZSXvSdFQy0yjjlkQIxbhjPVsyUrO2bqU1nenqmp-j60PfssLn6CDrjzimciRopmolWt5QVShxoGyKAMn1elOOM2mnKdF7U_WvqXpvqv4xtejwQedsDB7-VErKhnPJFwW5OyA-9DGtzTamodPZ7IaY-mSCLTL-_5Rvu0yKYg</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Gupta, Narain</creator><creator>Dutta, Goutam</creator><creator>Mitra, Krishnendranath</creator><creator>Kumar Tiwari, Manoj</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231002</creationdate><title>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</title><author>Gupta, Narain ; Dutta, Goutam ; Mitra, Krishnendranath ; Kumar Tiwari, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Analytics</topic><topic>Decision support system</topic><topic>Decision support systems</topic><topic>Demand</topic><topic>Empirical analysis</topic><topic>EVPI</topic><topic>Expected values</topic><topic>iron and steel industry</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>planning with optimisation</topic><topic>Steel industry</topic><topic>stochastic programming</topic><topic>VSS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Narain</creatorcontrib><creatorcontrib>Dutta, Goutam</creatorcontrib><creatorcontrib>Mitra, Krishnendranath</creatorcontrib><creatorcontrib>Kumar Tiwari, Manoj</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Narain</au><au>Dutta, Goutam</au><au>Mitra, Krishnendranath</au><au>Kumar Tiwari, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</atitle><jtitle>International journal of production research</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>61</volume><issue>19</issue><spage>6501</spage><epage>6518</epage><pages>6501-6518</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2022.2131926</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2023-10, Vol.61 (19), p.6501-6518
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2848593718
source Taylor & Francis:Master (3349 titles)
subjects Aluminum
Analytics
Decision support system
Decision support systems
Demand
Empirical analysis
EVPI
Expected values
iron and steel industry
Linear programming
Optimization
planning with optimisation
Steel industry
stochastic programming
VSS
title Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytics%20with%20stochastic%20optimisation:%20experimental%20results%20of%20demand%20uncertainty%20in%20process%20industries&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Gupta,%20Narain&rft.date=2023-10-02&rft.volume=61&rft.issue=19&rft.spage=6501&rft.epage=6518&rft.pages=6501-6518&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2022.2131926&rft_dat=%3Cproquest_econi%3E2848593718%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848593718&rft_id=info:pmid/&rfr_iscdi=true