Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries
This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage a...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2023-10, Vol.61 (19), p.6501-6518 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6518 |
---|---|
container_issue | 19 |
container_start_page | 6501 |
container_title | International journal of production research |
container_volume | 61 |
creator | Gupta, Narain Dutta, Goutam Mitra, Krishnendranath Kumar Tiwari, Manoj |
description | This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention. |
doi_str_mv | 10.1080/00207543.2022.2131926 |
format | Article |
fullrecord | <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2848593718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848593718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWA-PIAS83prDJpv1SimeoOCNQu9Cms3SyDapmSy1b29KFe8MDBmG75_Dj9AVJVNKFLkhhJFG1HzKCGNTRjltmTxCE8qlrIRSi2M02TPVHjpFZwAfpDyh6gla3Qcz7LK3gLc-rzDkaFcGSgHHTfZrDyb7GG6x-9q45NcuZDPg5GAcMuDY486tTejwGKxL2fiQd9gHvEnROoCSdiPk5B1coJPeDOAuf_5z9P748DZ7ruavTy-z-3lleSty1TvLCbM1oW4p2kaU4JZZSXvSdFQy0yjjlkQIxbhjPVsyUrO2bqU1nenqmp-j60PfssLn6CDrjzimciRopmolWt5QVShxoGyKAMn1elOOM2mnKdF7U_WvqXpvqv4xtejwQedsDB7-VErKhnPJFwW5OyA-9DGtzTamodPZ7IaY-mSCLTL-_5Rvu0yKYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848593718</pqid></control><display><type>article</type><title>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</title><source>Taylor & Francis:Master (3349 titles)</source><creator>Gupta, Narain ; Dutta, Goutam ; Mitra, Krishnendranath ; Kumar Tiwari, Manoj</creator><creatorcontrib>Gupta, Narain ; Dutta, Goutam ; Mitra, Krishnendranath ; Kumar Tiwari, Manoj</creatorcontrib><description>This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2022.2131926</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>Aluminum ; Analytics ; Decision support system ; Decision support systems ; Demand ; Empirical analysis ; EVPI ; Expected values ; iron and steel industry ; Linear programming ; Optimization ; planning with optimisation ; Steel industry ; stochastic programming ; VSS</subject><ispartof>International journal of production research, 2023-10, Vol.61 (19), p.6501-6518</ispartof><rights>2022 Informa UK Limited, trading as Taylor & Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</citedby><cites>FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2022.2131926$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2022.2131926$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,59636,60425</link.rule.ids></links><search><creatorcontrib>Gupta, Narain</creatorcontrib><creatorcontrib>Dutta, Goutam</creatorcontrib><creatorcontrib>Mitra, Krishnendranath</creatorcontrib><creatorcontrib>Kumar Tiwari, Manoj</creatorcontrib><title>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</title><title>International journal of production research</title><description>This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.</description><subject>Aluminum</subject><subject>Analytics</subject><subject>Decision support system</subject><subject>Decision support systems</subject><subject>Demand</subject><subject>Empirical analysis</subject><subject>EVPI</subject><subject>Expected values</subject><subject>iron and steel industry</subject><subject>Linear programming</subject><subject>Optimization</subject><subject>planning with optimisation</subject><subject>Steel industry</subject><subject>stochastic programming</subject><subject>VSS</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWA-PIAS83prDJpv1SimeoOCNQu9Cms3SyDapmSy1b29KFe8MDBmG75_Dj9AVJVNKFLkhhJFG1HzKCGNTRjltmTxCE8qlrIRSi2M02TPVHjpFZwAfpDyh6gla3Qcz7LK3gLc-rzDkaFcGSgHHTfZrDyb7GG6x-9q45NcuZDPg5GAcMuDY486tTejwGKxL2fiQd9gHvEnROoCSdiPk5B1coJPeDOAuf_5z9P748DZ7ruavTy-z-3lleSty1TvLCbM1oW4p2kaU4JZZSXvSdFQy0yjjlkQIxbhjPVsyUrO2bqU1nenqmp-j60PfssLn6CDrjzimciRopmolWt5QVShxoGyKAMn1elOOM2mnKdF7U_WvqXpvqv4xtejwQedsDB7-VErKhnPJFwW5OyA-9DGtzTamodPZ7IaY-mSCLTL-_5Rvu0yKYg</recordid><startdate>20231002</startdate><enddate>20231002</enddate><creator>Gupta, Narain</creator><creator>Dutta, Goutam</creator><creator>Mitra, Krishnendranath</creator><creator>Kumar Tiwari, Manoj</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231002</creationdate><title>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</title><author>Gupta, Narain ; Dutta, Goutam ; Mitra, Krishnendranath ; Kumar Tiwari, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-fec302c401eb59755973c2c61f07d162a78aeb055823e2f2b20429496cadad443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Analytics</topic><topic>Decision support system</topic><topic>Decision support systems</topic><topic>Demand</topic><topic>Empirical analysis</topic><topic>EVPI</topic><topic>Expected values</topic><topic>iron and steel industry</topic><topic>Linear programming</topic><topic>Optimization</topic><topic>planning with optimisation</topic><topic>Steel industry</topic><topic>stochastic programming</topic><topic>VSS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Narain</creatorcontrib><creatorcontrib>Dutta, Goutam</creatorcontrib><creatorcontrib>Mitra, Krishnendranath</creatorcontrib><creatorcontrib>Kumar Tiwari, Manoj</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Narain</au><au>Dutta, Goutam</au><au>Mitra, Krishnendranath</au><au>Kumar Tiwari, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries</atitle><jtitle>International journal of production research</jtitle><date>2023-10-02</date><risdate>2023</risdate><volume>61</volume><issue>19</issue><spage>6501</spage><epage>6518</epage><pages>6501-6518</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>This study reports the test results of a two-stage stochastic linear programming (SLP) model with recourse using a user-friendly generic decision support system (DSS) in a North American steel company. This model has the flexibility to configure multiple material facilities, activities and storage areas in a multi-period and multi-scenario environment. The value of stochastic solution (VSS) with a real-world example has a potential benefit of US$ 24.61 million. Experiments were designed according to the potential joint probability distribution scenarios and the magnitude of demand variability. Overall, 144 SLP optimisation model instances were solved across four industries, namely, steel, aluminium, polymer and pharmaceuticals. The academic contribution of this research is two-fold: first, the potential contribution to profit in a steel company using an SLP model; and second, the optimisation empirical experiments confirm a pattern that the VSS and expected value of perfect information (EVPI) increase with the increase in demand variability. This study has implications for practicing managers seeking business solutions with prescriptive analytics using stochastic optimisation-based DSS. This study will attract more industry attention to business solutions, and the prescriptive analytics discipline will garner more scholarly and industry attention.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2022.2131926</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2023-10, Vol.61 (19), p.6501-6518 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_2848593718 |
source | Taylor & Francis:Master (3349 titles) |
subjects | Aluminum Analytics Decision support system Decision support systems Demand Empirical analysis EVPI Expected values iron and steel industry Linear programming Optimization planning with optimisation Steel industry stochastic programming VSS |
title | Analytics with stochastic optimisation: experimental results of demand uncertainty in process industries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytics%20with%20stochastic%20optimisation:%20experimental%20results%20of%20demand%20uncertainty%20in%20process%20industries&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Gupta,%20Narain&rft.date=2023-10-02&rft.volume=61&rft.issue=19&rft.spage=6501&rft.epage=6518&rft.pages=6501-6518&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2022.2131926&rft_dat=%3Cproquest_econi%3E2848593718%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848593718&rft_id=info:pmid/&rfr_iscdi=true |