Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things

An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Patt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Majlesi journal of electrical engineering 2023-06, Vol.17 (2), p.159-163
Hauptverfasser: Kurniawan, Turkhamun Adi, Sumadikarta, Istiqomah, Nauli, Sukarno Bahat, Zuli, Faizal, Santoso, Teguh Budi, Desma, Muhammad Roufiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 163
container_issue 2
container_start_page 159
container_title Majlesi journal of electrical engineering
container_volume 17
creator Kurniawan, Turkhamun Adi
Sumadikarta, Istiqomah
Nauli, Sukarno Bahat
Zuli, Faizal
Santoso, Teguh Budi
Desma, Muhammad Roufiqi
description An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.
doi_str_mv 10.30486/mjee.2023.1984928.1120
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2848491925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848491925</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-ad317ffbe3484d708ec5dca92d17c603042f3ab179ed294c6b2a7687faea3e03</originalsourceid><addsrcrecordid>eNpNkE9Lw0AUxBdRsNR-Bh94Ttw_abJ7rMXaQkFpei-bzUuypcnW7AbJtzeiB-cy7zDzezCEPDIaC5rI9Lk9I8acchEzJRPFZcwYpzdkximVEUuYuP1335OF92c6SVKeyWRGxoNzLeRoht6GEfLRB2zhy4YGNtogHNC4urPBug4Gb7sa9s7oC7zYTvcjfOgQsO9ga31wda9bWF1qN6GaFgrtsYSpFxqEXfeTwwCugmMzcfwDuav0xePiz-ck37we19to__62W6_20VXJEOlSsKyqChSJTMqMSjTL0mjFS5aZlE4j8ErogmUKS64SkxZcZ6nMKo1aIBVz8vRLvfbuc0AfTmc39N308MTlhFRM8aX4BqTZYsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848491925</pqid></control><display><type>article</type><title>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kurniawan, Turkhamun Adi ; Sumadikarta, Istiqomah ; Nauli, Sukarno Bahat ; Zuli, Faizal ; Santoso, Teguh Budi ; Desma, Muhammad Roufiqi</creator><creatorcontrib>Kurniawan, Turkhamun Adi ; Sumadikarta, Istiqomah ; Nauli, Sukarno Bahat ; Zuli, Faizal ; Santoso, Teguh Budi ; Desma, Muhammad Roufiqi</creatorcontrib><description>An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.</description><identifier>ISSN: 2008-1413</identifier><identifier>EISSN: 2008-1413</identifier><identifier>DOI: 10.30486/mjee.2023.1984928.1120</identifier><language>eng</language><publisher>Isfahan: Islamic Azad University Majlesi</publisher><subject>Algorithms ; Cameras ; Cybersecurity ; Data processing ; Face recognition ; Histograms ; Internet of Things ; Luminous intensity ; Monitoring ; Programming languages ; Security systems ; Smartphones ; Software ; Webcams</subject><ispartof>Majlesi journal of electrical engineering, 2023-06, Vol.17 (2), p.159-163</ispartof><rights>Copyright Islamic Azad University Majlesi Jun 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurniawan, Turkhamun Adi</creatorcontrib><creatorcontrib>Sumadikarta, Istiqomah</creatorcontrib><creatorcontrib>Nauli, Sukarno Bahat</creatorcontrib><creatorcontrib>Zuli, Faizal</creatorcontrib><creatorcontrib>Santoso, Teguh Budi</creatorcontrib><creatorcontrib>Desma, Muhammad Roufiqi</creatorcontrib><title>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</title><title>Majlesi journal of electrical engineering</title><description>An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Cybersecurity</subject><subject>Data processing</subject><subject>Face recognition</subject><subject>Histograms</subject><subject>Internet of Things</subject><subject>Luminous intensity</subject><subject>Monitoring</subject><subject>Programming languages</subject><subject>Security systems</subject><subject>Smartphones</subject><subject>Software</subject><subject>Webcams</subject><issn>2008-1413</issn><issn>2008-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE9Lw0AUxBdRsNR-Bh94Ttw_abJ7rMXaQkFpei-bzUuypcnW7AbJtzeiB-cy7zDzezCEPDIaC5rI9Lk9I8acchEzJRPFZcwYpzdkximVEUuYuP1335OF92c6SVKeyWRGxoNzLeRoht6GEfLRB2zhy4YGNtogHNC4urPBug4Gb7sa9s7oC7zYTvcjfOgQsO9ga31wda9bWF1qN6GaFgrtsYSpFxqEXfeTwwCugmMzcfwDuav0xePiz-ck37we19to__62W6_20VXJEOlSsKyqChSJTMqMSjTL0mjFS5aZlE4j8ErogmUKS64SkxZcZ6nMKo1aIBVz8vRLvfbuc0AfTmc39N308MTlhFRM8aX4BqTZYsY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kurniawan, Turkhamun Adi</creator><creator>Sumadikarta, Istiqomah</creator><creator>Nauli, Sukarno Bahat</creator><creator>Zuli, Faizal</creator><creator>Santoso, Teguh Budi</creator><creator>Desma, Muhammad Roufiqi</creator><general>Islamic Azad University Majlesi</general><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230601</creationdate><title>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</title><author>Kurniawan, Turkhamun Adi ; Sumadikarta, Istiqomah ; Nauli, Sukarno Bahat ; Zuli, Faizal ; Santoso, Teguh Budi ; Desma, Muhammad Roufiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-ad317ffbe3484d708ec5dca92d17c603042f3ab179ed294c6b2a7687faea3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Cybersecurity</topic><topic>Data processing</topic><topic>Face recognition</topic><topic>Histograms</topic><topic>Internet of Things</topic><topic>Luminous intensity</topic><topic>Monitoring</topic><topic>Programming languages</topic><topic>Security systems</topic><topic>Smartphones</topic><topic>Software</topic><topic>Webcams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurniawan, Turkhamun Adi</creatorcontrib><creatorcontrib>Sumadikarta, Istiqomah</creatorcontrib><creatorcontrib>Nauli, Sukarno Bahat</creatorcontrib><creatorcontrib>Zuli, Faizal</creatorcontrib><creatorcontrib>Santoso, Teguh Budi</creatorcontrib><creatorcontrib>Desma, Muhammad Roufiqi</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Majlesi journal of electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurniawan, Turkhamun Adi</au><au>Sumadikarta, Istiqomah</au><au>Nauli, Sukarno Bahat</au><au>Zuli, Faizal</au><au>Santoso, Teguh Budi</au><au>Desma, Muhammad Roufiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</atitle><jtitle>Majlesi journal of electrical engineering</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>159</spage><epage>163</epage><pages>159-163</pages><issn>2008-1413</issn><eissn>2008-1413</eissn><abstract>An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.</abstract><cop>Isfahan</cop><pub>Islamic Azad University Majlesi</pub><doi>10.30486/mjee.2023.1984928.1120</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2008-1413
ispartof Majlesi journal of electrical engineering, 2023-06, Vol.17 (2), p.159-163
issn 2008-1413
2008-1413
language eng
recordid cdi_proquest_journals_2848491925
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cameras
Cybersecurity
Data processing
Face recognition
Histograms
Internet of Things
Luminous intensity
Monitoring
Programming languages
Security systems
Smartphones
Software
Webcams
title Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20Security%20System%20with%20Face%20Recognition%20using%20Local%20Binary%20Pattern%20Histogram%20Algorithm%20based%20on%20the%20Internet%20of%20Things&rft.jtitle=Majlesi%20journal%20of%20electrical%20engineering&rft.au=Kurniawan,%20Turkhamun%20Adi&rft.date=2023-06-01&rft.volume=17&rft.issue=2&rft.spage=159&rft.epage=163&rft.pages=159-163&rft.issn=2008-1413&rft.eissn=2008-1413&rft_id=info:doi/10.30486/mjee.2023.1984928.1120&rft_dat=%3Cproquest%3E2848491925%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848491925&rft_id=info:pmid/&rfr_iscdi=true