Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things
An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Patt...
Gespeichert in:
Veröffentlicht in: | Majlesi journal of electrical engineering 2023-06, Vol.17 (2), p.159-163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | 2 |
container_start_page | 159 |
container_title | Majlesi journal of electrical engineering |
container_volume | 17 |
creator | Kurniawan, Turkhamun Adi Sumadikarta, Istiqomah Nauli, Sukarno Bahat Zuli, Faizal Santoso, Teguh Budi Desma, Muhammad Roufiqi |
description | An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance. |
doi_str_mv | 10.30486/mjee.2023.1984928.1120 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2848491925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848491925</sourcerecordid><originalsourceid>FETCH-LOGICAL-p98t-ad317ffbe3484d708ec5dca92d17c603042f3ab179ed294c6b2a7687faea3e03</originalsourceid><addsrcrecordid>eNpNkE9Lw0AUxBdRsNR-Bh94Ttw_abJ7rMXaQkFpei-bzUuypcnW7AbJtzeiB-cy7zDzezCEPDIaC5rI9Lk9I8acchEzJRPFZcwYpzdkximVEUuYuP1335OF92c6SVKeyWRGxoNzLeRoht6GEfLRB2zhy4YGNtogHNC4urPBug4Gb7sa9s7oC7zYTvcjfOgQsO9ga31wda9bWF1qN6GaFgrtsYSpFxqEXfeTwwCugmMzcfwDuav0xePiz-ck37we19to__62W6_20VXJEOlSsKyqChSJTMqMSjTL0mjFS5aZlE4j8ErogmUKS64SkxZcZ6nMKo1aIBVz8vRLvfbuc0AfTmc39N308MTlhFRM8aX4BqTZYsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848491925</pqid></control><display><type>article</type><title>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kurniawan, Turkhamun Adi ; Sumadikarta, Istiqomah ; Nauli, Sukarno Bahat ; Zuli, Faizal ; Santoso, Teguh Budi ; Desma, Muhammad Roufiqi</creator><creatorcontrib>Kurniawan, Turkhamun Adi ; Sumadikarta, Istiqomah ; Nauli, Sukarno Bahat ; Zuli, Faizal ; Santoso, Teguh Budi ; Desma, Muhammad Roufiqi</creatorcontrib><description>An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.</description><identifier>ISSN: 2008-1413</identifier><identifier>EISSN: 2008-1413</identifier><identifier>DOI: 10.30486/mjee.2023.1984928.1120</identifier><language>eng</language><publisher>Isfahan: Islamic Azad University Majlesi</publisher><subject>Algorithms ; Cameras ; Cybersecurity ; Data processing ; Face recognition ; Histograms ; Internet of Things ; Luminous intensity ; Monitoring ; Programming languages ; Security systems ; Smartphones ; Software ; Webcams</subject><ispartof>Majlesi journal of electrical engineering, 2023-06, Vol.17 (2), p.159-163</ispartof><rights>Copyright Islamic Azad University Majlesi Jun 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kurniawan, Turkhamun Adi</creatorcontrib><creatorcontrib>Sumadikarta, Istiqomah</creatorcontrib><creatorcontrib>Nauli, Sukarno Bahat</creatorcontrib><creatorcontrib>Zuli, Faizal</creatorcontrib><creatorcontrib>Santoso, Teguh Budi</creatorcontrib><creatorcontrib>Desma, Muhammad Roufiqi</creatorcontrib><title>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</title><title>Majlesi journal of electrical engineering</title><description>An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>Cybersecurity</subject><subject>Data processing</subject><subject>Face recognition</subject><subject>Histograms</subject><subject>Internet of Things</subject><subject>Luminous intensity</subject><subject>Monitoring</subject><subject>Programming languages</subject><subject>Security systems</subject><subject>Smartphones</subject><subject>Software</subject><subject>Webcams</subject><issn>2008-1413</issn><issn>2008-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkE9Lw0AUxBdRsNR-Bh94Ttw_abJ7rMXaQkFpei-bzUuypcnW7AbJtzeiB-cy7zDzezCEPDIaC5rI9Lk9I8acchEzJRPFZcwYpzdkximVEUuYuP1335OF92c6SVKeyWRGxoNzLeRoht6GEfLRB2zhy4YGNtogHNC4urPBug4Gb7sa9s7oC7zYTvcjfOgQsO9ga31wda9bWF1qN6GaFgrtsYSpFxqEXfeTwwCugmMzcfwDuav0xePiz-ck37we19to__62W6_20VXJEOlSsKyqChSJTMqMSjTL0mjFS5aZlE4j8ErogmUKS64SkxZcZ6nMKo1aIBVz8vRLvfbuc0AfTmc39N308MTlhFRM8aX4BqTZYsY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kurniawan, Turkhamun Adi</creator><creator>Sumadikarta, Istiqomah</creator><creator>Nauli, Sukarno Bahat</creator><creator>Zuli, Faizal</creator><creator>Santoso, Teguh Budi</creator><creator>Desma, Muhammad Roufiqi</creator><general>Islamic Azad University Majlesi</general><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230601</creationdate><title>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</title><author>Kurniawan, Turkhamun Adi ; Sumadikarta, Istiqomah ; Nauli, Sukarno Bahat ; Zuli, Faizal ; Santoso, Teguh Budi ; Desma, Muhammad Roufiqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p98t-ad317ffbe3484d708ec5dca92d17c603042f3ab179ed294c6b2a7687faea3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Cybersecurity</topic><topic>Data processing</topic><topic>Face recognition</topic><topic>Histograms</topic><topic>Internet of Things</topic><topic>Luminous intensity</topic><topic>Monitoring</topic><topic>Programming languages</topic><topic>Security systems</topic><topic>Smartphones</topic><topic>Software</topic><topic>Webcams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurniawan, Turkhamun Adi</creatorcontrib><creatorcontrib>Sumadikarta, Istiqomah</creatorcontrib><creatorcontrib>Nauli, Sukarno Bahat</creatorcontrib><creatorcontrib>Zuli, Faizal</creatorcontrib><creatorcontrib>Santoso, Teguh Budi</creatorcontrib><creatorcontrib>Desma, Muhammad Roufiqi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Majlesi journal of electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurniawan, Turkhamun Adi</au><au>Sumadikarta, Istiqomah</au><au>Nauli, Sukarno Bahat</au><au>Zuli, Faizal</au><au>Santoso, Teguh Budi</au><au>Desma, Muhammad Roufiqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things</atitle><jtitle>Majlesi journal of electrical engineering</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>159</spage><epage>163</epage><pages>159-163</pages><issn>2008-1413</issn><eissn>2008-1413</eissn><abstract>An Internet of Things-based security system and OpenCV technology have been developed to improve the efficiency and ease of monitoring video footage from CCTV. The face detection process is carried out using the Haar Cascade method, while facial recognition is carried out using the Local Binary Pattern Histogram algorithm. The test results show that light intensity has a significant influence on system accuracy, but this system provides convenience in monitoring CCTV video in real-time through a webserver and improves security, especially in rooms by utilizing Internet of Things technology. The current facial recognition success rate is 72%. Therefore, for the subsequent development of the system, it is recommended to increase the success rate of facial recognition and also implement the File Transfer Protocol to ensure better and better system performance.</abstract><cop>Isfahan</cop><pub>Islamic Azad University Majlesi</pub><doi>10.30486/mjee.2023.1984928.1120</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2008-1413 |
ispartof | Majlesi journal of electrical engineering, 2023-06, Vol.17 (2), p.159-163 |
issn | 2008-1413 2008-1413 |
language | eng |
recordid | cdi_proquest_journals_2848491925 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Cameras Cybersecurity Data processing Face recognition Histograms Internet of Things Luminous intensity Monitoring Programming languages Security systems Smartphones Software Webcams |
title | Room Security System with Face Recognition using Local Binary Pattern Histogram Algorithm based on the Internet of Things |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A23%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20Security%20System%20with%20Face%20Recognition%20using%20Local%20Binary%20Pattern%20Histogram%20Algorithm%20based%20on%20the%20Internet%20of%20Things&rft.jtitle=Majlesi%20journal%20of%20electrical%20engineering&rft.au=Kurniawan,%20Turkhamun%20Adi&rft.date=2023-06-01&rft.volume=17&rft.issue=2&rft.spage=159&rft.epage=163&rft.pages=159-163&rft.issn=2008-1413&rft.eissn=2008-1413&rft_id=info:doi/10.30486/mjee.2023.1984928.1120&rft_dat=%3Cproquest%3E2848491925%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848491925&rft_id=info:pmid/&rfr_iscdi=true |