SMEFT analysis of mW

A bstract We use the Fitmaker tool to incorporate the recent CDF measurement of m W in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O HW...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2022-08, Vol.2022 (8), p.308, Article 308
Hauptverfasser: Bagnaschi, Emanuele, Ellis, John, Madigan, Maeve, Mimasu, Ken, Sanz, Veronica, You, Tevong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 308
container_title The journal of high energy physics
container_volume 2022
creator Bagnaschi, Emanuele
Ellis, John
Madigan, Maeve
Mimasu, Ken
Sanz, Veronica
You, Tevong
description A bstract We use the Fitmaker tool to incorporate the recent CDF measurement of m W in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O HWB , O HD , O ℓℓ or O H ℓ 3 with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z ′ vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.
doi_str_mv 10.1007/JHEP08(2022)308
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2848478723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848478723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-4388ecba793ca0fdf6b1a01794a4caaaea4ba417ba2a248c13444359f87e56e33</originalsourceid><addsrcrecordid>eNp1j0FLAzEQhYMoWKs3weuCFz2snSSzTfYoZWuVioIVj2E2JtLSdmvSHvrvm2UFvXiaOXzv8T7GrjjccQA1eJpUr6BvBAhxK0EfsR4HUeYaVXn85z9lZzEuAHjBS-ixy7fnajzLaE3LfZzHrPHZ6uOcnXhaRnfxc_vsfVzNRpN8-vLwOLqf5ha52uYotXa2JlVKS-A__bDmBFyVSGiJyBHWlMiaBAnUlktElEXptXLF0EnZZ9dd7yY03zsXt2bR7EKaEo3QmNZqJVpq0FE2NDEG580mzFcU9oaDadVNp25adZPUUwK6REzk-suF397_Ige3vVg2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848478723</pqid></control><display><type>article</type><title>SMEFT analysis of mW</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Bagnaschi, Emanuele ; Ellis, John ; Madigan, Maeve ; Mimasu, Ken ; Sanz, Veronica ; You, Tevong</creator><creatorcontrib>Bagnaschi, Emanuele ; Ellis, John ; Madigan, Maeve ; Mimasu, Ken ; Sanz, Veronica ; You, Tevong</creatorcontrib><description>A bstract We use the Fitmaker tool to incorporate the recent CDF measurement of m W in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O HWB , O HD , O ℓℓ or O H ℓ 3 with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z ′ vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP08(2022)308</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Collaboration ; Couplings ; Electroweak model ; Elementary Particles ; Field theory ; High energy physics ; Leptons ; Operators ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2022-08, Vol.2022 (8), p.308, Article 308</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-4388ecba793ca0fdf6b1a01794a4caaaea4ba417ba2a248c13444359f87e56e33</citedby><cites>FETCH-LOGICAL-c417t-4388ecba793ca0fdf6b1a01794a4caaaea4ba417ba2a248c13444359f87e56e33</cites><orcidid>0000-0002-6827-5022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP08(2022)308$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP08(2022)308$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,42189,51576</link.rule.ids></links><search><creatorcontrib>Bagnaschi, Emanuele</creatorcontrib><creatorcontrib>Ellis, John</creatorcontrib><creatorcontrib>Madigan, Maeve</creatorcontrib><creatorcontrib>Mimasu, Ken</creatorcontrib><creatorcontrib>Sanz, Veronica</creatorcontrib><creatorcontrib>You, Tevong</creatorcontrib><title>SMEFT analysis of mW</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We use the Fitmaker tool to incorporate the recent CDF measurement of m W in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O HWB , O HD , O ℓℓ or O H ℓ 3 with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z ′ vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.</description><subject>Classical and Quantum Gravitation</subject><subject>Collaboration</subject><subject>Couplings</subject><subject>Electroweak model</subject><subject>Elementary Particles</subject><subject>Field theory</subject><subject>High energy physics</subject><subject>Leptons</subject><subject>Operators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1j0FLAzEQhYMoWKs3weuCFz2snSSzTfYoZWuVioIVj2E2JtLSdmvSHvrvm2UFvXiaOXzv8T7GrjjccQA1eJpUr6BvBAhxK0EfsR4HUeYaVXn85z9lZzEuAHjBS-ixy7fnajzLaE3LfZzHrPHZ6uOcnXhaRnfxc_vsfVzNRpN8-vLwOLqf5ha52uYotXa2JlVKS-A__bDmBFyVSGiJyBHWlMiaBAnUlktElEXptXLF0EnZZ9dd7yY03zsXt2bR7EKaEo3QmNZqJVpq0FE2NDEG580mzFcU9oaDadVNp25adZPUUwK6REzk-suF397_Ige3vVg2</recordid><startdate>20220831</startdate><enddate>20220831</enddate><creator>Bagnaschi, Emanuele</creator><creator>Ellis, John</creator><creator>Madigan, Maeve</creator><creator>Mimasu, Ken</creator><creator>Sanz, Veronica</creator><creator>You, Tevong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6827-5022</orcidid></search><sort><creationdate>20220831</creationdate><title>SMEFT analysis of mW</title><author>Bagnaschi, Emanuele ; Ellis, John ; Madigan, Maeve ; Mimasu, Ken ; Sanz, Veronica ; You, Tevong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-4388ecba793ca0fdf6b1a01794a4caaaea4ba417ba2a248c13444359f87e56e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Collaboration</topic><topic>Couplings</topic><topic>Electroweak model</topic><topic>Elementary Particles</topic><topic>Field theory</topic><topic>High energy physics</topic><topic>Leptons</topic><topic>Operators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagnaschi, Emanuele</creatorcontrib><creatorcontrib>Ellis, John</creatorcontrib><creatorcontrib>Madigan, Maeve</creatorcontrib><creatorcontrib>Mimasu, Ken</creatorcontrib><creatorcontrib>Sanz, Veronica</creatorcontrib><creatorcontrib>You, Tevong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagnaschi, Emanuele</au><au>Ellis, John</au><au>Madigan, Maeve</au><au>Mimasu, Ken</au><au>Sanz, Veronica</au><au>You, Tevong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMEFT analysis of mW</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2022-08-31</date><risdate>2022</risdate><volume>2022</volume><issue>8</issue><spage>308</spage><pages>308-</pages><artnum>308</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We use the Fitmaker tool to incorporate the recent CDF measurement of m W in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O HWB , O HD , O ℓℓ or O H ℓ 3 with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z ′ vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP08(2022)308</doi><orcidid>https://orcid.org/0000-0002-6827-5022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2022-08, Vol.2022 (8), p.308, Article 308
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2848478723
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Classical and Quantum Gravitation
Collaboration
Couplings
Electroweak model
Elementary Particles
Field theory
High energy physics
Leptons
Operators
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
title SMEFT analysis of mW
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMEFT%20analysis%20of%20mW&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Bagnaschi,%20Emanuele&rft.date=2022-08-31&rft.volume=2022&rft.issue=8&rft.spage=308&rft.pages=308-&rft.artnum=308&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP08(2022)308&rft_dat=%3Cproquest_cross%3E2848478723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848478723&rft_id=info:pmid/&rfr_iscdi=true