Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers

In the present paper, Robin boundary value problem for a system of singularly perturbed reaction-diffusion equations with discontinuous source term is studied. The highest order derivative in each equation is multiplied by the perturbation parameters which are different in magnitude. The considered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of pure and applied mathematics 2023-09, Vol.54 (3), p.675-688
Hauptverfasser: Chawla, Sheetal, Urmil, Singh, Jagbir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 688
container_issue 3
container_start_page 675
container_title Indian journal of pure and applied mathematics
container_volume 54
creator Chawla, Sheetal
Urmil
Singh, Jagbir
description In the present paper, Robin boundary value problem for a system of singularly perturbed reaction-diffusion equations with discontinuous source term is studied. The highest order derivative in each equation is multiplied by the perturbation parameters which are different in magnitude. The considered system does not obey maximum principle. Forward-backward approximation is used for the Robin boundary conditions and a central finite difference approximation is proposed for the differential system in conjunction with piecewise uniform Shishkin meshes and graded Bakhvalov meshes. The scheme is proved to be an almost first-order parameter uniform convergent. Numerical experiments are presented which are in line with the theoretical findings.
doi_str_mv 10.1007/s13226-022-00285-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2848435389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2848435389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-2b576fa36821f713b6ec4fd75f8356273636120f4fa21cafb176e3e8b362a28d3</originalsourceid><addsrcrecordid>eNp9UctKAzEUHUTBWv0BVwHX0Twmj1lKsSoU3Og6ZGaSdso0qXkU5mP8V6MVunN1z733nMOBU1W3GN1jhMRDxJQQDhEhECEiGZzOqhlqBIOi5uy8YIQbyJiUl9VVjFuEOEVNM6u-lkNKpgc7EzfA5Z0JQ6fHsqaN74H1AWjQ-bwfCydOMZkd8BbEwa3zqMM4gb0JKYe2vIPRXRq8g_1gbY4FgeDbwYHWZ9frMIGDHrMB-3Idi89GH4rN6atdDwaXTHAlwKgnE-J1dWH1GM3N35xXH8un98ULXL09vy4eV7AjAiVIWia41ZRLgq3AtOWmq20vmJWUcSIopxwTZGurCe60bbHghhrZUk40kT2dV3dH35LtM5uY1NbnnxxREVnLmjIqm8IiR1YXfIzBWLUPw65EVxipnxrUsQZValC_NaipiOhRFAvZrU04Wf-j-gYmA498</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2848435389</pqid></control><display><type>article</type><title>Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Chawla, Sheetal ; Urmil ; Singh, Jagbir</creator><creatorcontrib>Chawla, Sheetal ; Urmil ; Singh, Jagbir</creatorcontrib><description>In the present paper, Robin boundary value problem for a system of singularly perturbed reaction-diffusion equations with discontinuous source term is studied. The highest order derivative in each equation is multiplied by the perturbation parameters which are different in magnitude. The considered system does not obey maximum principle. Forward-backward approximation is used for the Robin boundary conditions and a central finite difference approximation is proposed for the differential system in conjunction with piecewise uniform Shishkin meshes and graded Bakhvalov meshes. The scheme is proved to be an almost first-order parameter uniform convergent. Numerical experiments are presented which are in line with the theoretical findings.</description><identifier>ISSN: 0019-5588</identifier><identifier>EISSN: 0975-7465</identifier><identifier>DOI: 10.1007/s13226-022-00285-y</identifier><language>eng</language><publisher>New Delhi: Indian National Science Academy</publisher><subject>Applications of Mathematics ; Approximation ; Boundary conditions ; Boundary value problems ; Diffusion layers ; Finite difference method ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Numerical Analysis ; Numerical methods ; Order parameters ; Original Research ; Perturbation ; Reaction-diffusion equations</subject><ispartof>Indian journal of pure and applied mathematics, 2023-09, Vol.54 (3), p.675-688</ispartof><rights>The Indian National Science Academy 2022</rights><rights>The Indian National Science Academy 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-2b576fa36821f713b6ec4fd75f8356273636120f4fa21cafb176e3e8b362a28d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13226-022-00285-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13226-022-00285-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Chawla, Sheetal</creatorcontrib><creatorcontrib>Urmil</creatorcontrib><creatorcontrib>Singh, Jagbir</creatorcontrib><title>Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers</title><title>Indian journal of pure and applied mathematics</title><addtitle>Indian J Pure Appl Math</addtitle><description>In the present paper, Robin boundary value problem for a system of singularly perturbed reaction-diffusion equations with discontinuous source term is studied. The highest order derivative in each equation is multiplied by the perturbation parameters which are different in magnitude. The considered system does not obey maximum principle. Forward-backward approximation is used for the Robin boundary conditions and a central finite difference approximation is proposed for the differential system in conjunction with piecewise uniform Shishkin meshes and graded Bakhvalov meshes. The scheme is proved to be an almost first-order parameter uniform convergent. Numerical experiments are presented which are in line with the theoretical findings.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Diffusion layers</subject><subject>Finite difference method</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Numerical Analysis</subject><subject>Numerical methods</subject><subject>Order parameters</subject><subject>Original Research</subject><subject>Perturbation</subject><subject>Reaction-diffusion equations</subject><issn>0019-5588</issn><issn>0975-7465</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UctKAzEUHUTBWv0BVwHX0Twmj1lKsSoU3Og6ZGaSdso0qXkU5mP8V6MVunN1z733nMOBU1W3GN1jhMRDxJQQDhEhECEiGZzOqhlqBIOi5uy8YIQbyJiUl9VVjFuEOEVNM6u-lkNKpgc7EzfA5Z0JQ6fHsqaN74H1AWjQ-bwfCydOMZkd8BbEwa3zqMM4gb0JKYe2vIPRXRq8g_1gbY4FgeDbwYHWZ9frMIGDHrMB-3Idi89GH4rN6atdDwaXTHAlwKgnE-J1dWH1GM3N35xXH8un98ULXL09vy4eV7AjAiVIWia41ZRLgq3AtOWmq20vmJWUcSIopxwTZGurCe60bbHghhrZUk40kT2dV3dH35LtM5uY1NbnnxxREVnLmjIqm8IiR1YXfIzBWLUPw65EVxipnxrUsQZValC_NaipiOhRFAvZrU04Wf-j-gYmA498</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chawla, Sheetal</creator><creator>Urmil</creator><creator>Singh, Jagbir</creator><general>Indian National Science Academy</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers</title><author>Chawla, Sheetal ; Urmil ; Singh, Jagbir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-2b576fa36821f713b6ec4fd75f8356273636120f4fa21cafb176e3e8b362a28d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Diffusion layers</topic><topic>Finite difference method</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Numerical Analysis</topic><topic>Numerical methods</topic><topic>Order parameters</topic><topic>Original Research</topic><topic>Perturbation</topic><topic>Reaction-diffusion equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chawla, Sheetal</creatorcontrib><creatorcontrib>Urmil</creatorcontrib><creatorcontrib>Singh, Jagbir</creatorcontrib><collection>CrossRef</collection><jtitle>Indian journal of pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chawla, Sheetal</au><au>Urmil</au><au>Singh, Jagbir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers</atitle><jtitle>Indian journal of pure and applied mathematics</jtitle><stitle>Indian J Pure Appl Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>54</volume><issue>3</issue><spage>675</spage><epage>688</epage><pages>675-688</pages><issn>0019-5588</issn><eissn>0975-7465</eissn><abstract>In the present paper, Robin boundary value problem for a system of singularly perturbed reaction-diffusion equations with discontinuous source term is studied. The highest order derivative in each equation is multiplied by the perturbation parameters which are different in magnitude. The considered system does not obey maximum principle. Forward-backward approximation is used for the Robin boundary conditions and a central finite difference approximation is proposed for the differential system in conjunction with piecewise uniform Shishkin meshes and graded Bakhvalov meshes. The scheme is proved to be an almost first-order parameter uniform convergent. Numerical experiments are presented which are in line with the theoretical findings.</abstract><cop>New Delhi</cop><pub>Indian National Science Academy</pub><doi>10.1007/s13226-022-00285-y</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-5588
ispartof Indian journal of pure and applied mathematics, 2023-09, Vol.54 (3), p.675-688
issn 0019-5588
0975-7465
language eng
recordid cdi_proquest_journals_2848435389
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Approximation
Boundary conditions
Boundary value problems
Diffusion layers
Finite difference method
Mathematics
Mathematics and Statistics
Maximum principle
Numerical Analysis
Numerical methods
Order parameters
Original Research
Perturbation
Reaction-diffusion equations
title Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fitted%20mesh%20numerical%20method%20for%20a%20coupled%20system%20of%20singularly%20perturbed%20reaction-diffusion%20robin%20boundary%20value%20problem%20having%20boundary%20and%20internal%20layers&rft.jtitle=Indian%20journal%20of%20pure%20and%20applied%20mathematics&rft.au=Chawla,%20Sheetal&rft.date=2023-09-01&rft.volume=54&rft.issue=3&rft.spage=675&rft.epage=688&rft.pages=675-688&rft.issn=0019-5588&rft.eissn=0975-7465&rft_id=info:doi/10.1007/s13226-022-00285-y&rft_dat=%3Cproquest_cross%3E2848435389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2848435389&rft_id=info:pmid/&rfr_iscdi=true