A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles

An autonomous vehicle (AV) is a combination of subsystems, measuring its driving environments with different sensors (e.g., camera, RADAR and LiDAR) in real time. AVs follow their control policies and make real-time control decisions based on sensor measurements to ensure driving safety. Control pol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-08, Vol.10 (16), p.1-1
Hauptverfasser: Kang, Liuwang, Shen, Haiying, Li, Yezhuo, Xu, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 16
container_start_page 1
container_title IEEE internet of things journal
container_volume 10
creator Kang, Liuwang
Shen, Haiying
Li, Yezhuo
Xu, Shiwei
description An autonomous vehicle (AV) is a combination of subsystems, measuring its driving environments with different sensors (e.g., camera, RADAR and LiDAR) in real time. AVs follow their control policies and make real-time control decisions based on sensor measurements to ensure driving safety. Control policies in an AV are usually implemented with codes and not open to the public and drivers, which results in people's strong concerns about driving safety. In this paper, we propose a data-driven control policy based driving safety analysis system (PoSa) to analyze driving safety of a target AV. In PoSa, we firstly build a data-driven control policy extraction method to extract control policies of a target AV based on its historical driving data. Then, we develop a hazard driving scenario identification method to identify possible hazard driving scenarios of a target AV by executing the extracted control policies under different driving scenarios. Lastly, we use vehicle driving data from one industry-standard AV platform (Baidu Apollo) to evaluate PoSa's hazard driving scenario identification performance. We compared its identification results with Baidu AV accident reports from California DMV and the hazard driving scenario identification results cover as many as 89% hazard driving scenarios in the Baidu AV accident report, which demonstrates that PoSa has good performance on identifying hazard driving scenarios and its identification results can be used to optimize control policies for driving safety improvement.
doi_str_mv 10.1109/JIOT.2023.3244756
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2847967081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044206</ieee_id><sourcerecordid>2847967081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-c131545f4f307d696af4e1997e276587a1605bc63794dc6c4c4d8809c6ad2bea3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOfDVpLsvmx2QwYVPwKmTpqXZ0zUxaof_eju3Cq_PCed7D4UHolpIppUQ_vC5WmykjjE85E0Kl8gKNGGcqEVKyy3_5Gk1i3BFChlpKtRyhzxzPbWuTIlS_0OCZb9rga_zm68r1eGsjFHg-7KrmC69tCW2P88bWfawiXvexhT0ufcB51_rG730X8Qd8V66GeIOuSltHmJznGL0_PW5mL8ly9byY5cvEMS3axFFOU5GWouREFVJLWwqgWitgSqaZslSSdOskV1oUTjrhRJFlRDtpC7YFy8fo_nT3EPxPB7E1O9-F4cdoWCaUlopkdKDoiXLBxxigNIdQ7W3oDSXmKNEcJZqjRHOWOHTuTp0KAP7xRAhGJP8DPlNs-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847967081</pqid></control><display><type>article</type><title>A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles</title><source>IEEE Electronic Library (IEL)</source><creator>Kang, Liuwang ; Shen, Haiying ; Li, Yezhuo ; Xu, Shiwei</creator><creatorcontrib>Kang, Liuwang ; Shen, Haiying ; Li, Yezhuo ; Xu, Shiwei</creatorcontrib><description>An autonomous vehicle (AV) is a combination of subsystems, measuring its driving environments with different sensors (e.g., camera, RADAR and LiDAR) in real time. AVs follow their control policies and make real-time control decisions based on sensor measurements to ensure driving safety. Control policies in an AV are usually implemented with codes and not open to the public and drivers, which results in people's strong concerns about driving safety. In this paper, we propose a data-driven control policy based driving safety analysis system (PoSa) to analyze driving safety of a target AV. In PoSa, we firstly build a data-driven control policy extraction method to extract control policies of a target AV based on its historical driving data. Then, we develop a hazard driving scenario identification method to identify possible hazard driving scenarios of a target AV by executing the extracted control policies under different driving scenarios. Lastly, we use vehicle driving data from one industry-standard AV platform (Baidu Apollo) to evaluate PoSa's hazard driving scenario identification performance. We compared its identification results with Baidu AV accident reports from California DMV and the hazard driving scenario identification results cover as many as 89% hazard driving scenarios in the Baidu AV accident report, which demonstrates that PoSa has good performance on identifying hazard driving scenarios and its identification results can be used to optimize control policies for driving safety improvement.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3244756</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accidents ; Autonomous vehicle ; Behavioral sciences ; Control policy extraction ; Control systems ; Data mining ; Driving safety analysis ; Hazard driving scenario identification ; Hazards ; Identification methods ; Internet of Things ; Policies ; Real time ; Roads ; Subsystems ; Vehicle safety ; Web and internet services</subject><ispartof>IEEE internet of things journal, 2023-08, Vol.10 (16), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-c131545f4f307d696af4e1997e276587a1605bc63794dc6c4c4d8809c6ad2bea3</citedby><cites>FETCH-LOGICAL-c294t-c131545f4f307d696af4e1997e276587a1605bc63794dc6c4c4d8809c6ad2bea3</cites><orcidid>0000-0002-6003-6465 ; 0000-0002-7681-6255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044206$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044206$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kang, Liuwang</creatorcontrib><creatorcontrib>Shen, Haiying</creatorcontrib><creatorcontrib>Li, Yezhuo</creatorcontrib><creatorcontrib>Xu, Shiwei</creatorcontrib><title>A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>An autonomous vehicle (AV) is a combination of subsystems, measuring its driving environments with different sensors (e.g., camera, RADAR and LiDAR) in real time. AVs follow their control policies and make real-time control decisions based on sensor measurements to ensure driving safety. Control policies in an AV are usually implemented with codes and not open to the public and drivers, which results in people's strong concerns about driving safety. In this paper, we propose a data-driven control policy based driving safety analysis system (PoSa) to analyze driving safety of a target AV. In PoSa, we firstly build a data-driven control policy extraction method to extract control policies of a target AV based on its historical driving data. Then, we develop a hazard driving scenario identification method to identify possible hazard driving scenarios of a target AV by executing the extracted control policies under different driving scenarios. Lastly, we use vehicle driving data from one industry-standard AV platform (Baidu Apollo) to evaluate PoSa's hazard driving scenario identification performance. We compared its identification results with Baidu AV accident reports from California DMV and the hazard driving scenario identification results cover as many as 89% hazard driving scenarios in the Baidu AV accident report, which demonstrates that PoSa has good performance on identifying hazard driving scenarios and its identification results can be used to optimize control policies for driving safety improvement.</description><subject>Accidents</subject><subject>Autonomous vehicle</subject><subject>Behavioral sciences</subject><subject>Control policy extraction</subject><subject>Control systems</subject><subject>Data mining</subject><subject>Driving safety analysis</subject><subject>Hazard driving scenario identification</subject><subject>Hazards</subject><subject>Identification methods</subject><subject>Internet of Things</subject><subject>Policies</subject><subject>Real time</subject><subject>Roads</subject><subject>Subsystems</subject><subject>Vehicle safety</subject><subject>Web and internet services</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOfDVpLsvmx2QwYVPwKmTpqXZ0zUxaof_eju3Cq_PCed7D4UHolpIppUQ_vC5WmykjjE85E0Kl8gKNGGcqEVKyy3_5Gk1i3BFChlpKtRyhzxzPbWuTIlS_0OCZb9rga_zm68r1eGsjFHg-7KrmC69tCW2P88bWfawiXvexhT0ufcB51_rG730X8Qd8V66GeIOuSltHmJznGL0_PW5mL8ly9byY5cvEMS3axFFOU5GWouREFVJLWwqgWitgSqaZslSSdOskV1oUTjrhRJFlRDtpC7YFy8fo_nT3EPxPB7E1O9-F4cdoWCaUlopkdKDoiXLBxxigNIdQ7W3oDSXmKNEcJZqjRHOWOHTuTp0KAP7xRAhGJP8DPlNs-Q</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Kang, Liuwang</creator><creator>Shen, Haiying</creator><creator>Li, Yezhuo</creator><creator>Xu, Shiwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6003-6465</orcidid><orcidid>https://orcid.org/0000-0002-7681-6255</orcidid></search><sort><creationdate>20230815</creationdate><title>A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles</title><author>Kang, Liuwang ; Shen, Haiying ; Li, Yezhuo ; Xu, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-c131545f4f307d696af4e1997e276587a1605bc63794dc6c4c4d8809c6ad2bea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accidents</topic><topic>Autonomous vehicle</topic><topic>Behavioral sciences</topic><topic>Control policy extraction</topic><topic>Control systems</topic><topic>Data mining</topic><topic>Driving safety analysis</topic><topic>Hazard driving scenario identification</topic><topic>Hazards</topic><topic>Identification methods</topic><topic>Internet of Things</topic><topic>Policies</topic><topic>Real time</topic><topic>Roads</topic><topic>Subsystems</topic><topic>Vehicle safety</topic><topic>Web and internet services</topic><toplevel>online_resources</toplevel><creatorcontrib>Kang, Liuwang</creatorcontrib><creatorcontrib>Shen, Haiying</creatorcontrib><creatorcontrib>Li, Yezhuo</creatorcontrib><creatorcontrib>Xu, Shiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kang, Liuwang</au><au>Shen, Haiying</au><au>Li, Yezhuo</au><au>Xu, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-08-15</date><risdate>2023</risdate><volume>10</volume><issue>16</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>An autonomous vehicle (AV) is a combination of subsystems, measuring its driving environments with different sensors (e.g., camera, RADAR and LiDAR) in real time. AVs follow their control policies and make real-time control decisions based on sensor measurements to ensure driving safety. Control policies in an AV are usually implemented with codes and not open to the public and drivers, which results in people's strong concerns about driving safety. In this paper, we propose a data-driven control policy based driving safety analysis system (PoSa) to analyze driving safety of a target AV. In PoSa, we firstly build a data-driven control policy extraction method to extract control policies of a target AV based on its historical driving data. Then, we develop a hazard driving scenario identification method to identify possible hazard driving scenarios of a target AV by executing the extracted control policies under different driving scenarios. Lastly, we use vehicle driving data from one industry-standard AV platform (Baidu Apollo) to evaluate PoSa's hazard driving scenario identification performance. We compared its identification results with Baidu AV accident reports from California DMV and the hazard driving scenario identification results cover as many as 89% hazard driving scenarios in the Baidu AV accident report, which demonstrates that PoSa has good performance on identifying hazard driving scenarios and its identification results can be used to optimize control policies for driving safety improvement.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3244756</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6003-6465</orcidid><orcidid>https://orcid.org/0000-0002-7681-6255</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-08, Vol.10 (16), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2847967081
source IEEE Electronic Library (IEL)
subjects Accidents
Autonomous vehicle
Behavioral sciences
Control policy extraction
Control systems
Data mining
Driving safety analysis
Hazard driving scenario identification
Hazards
Identification methods
Internet of Things
Policies
Real time
Roads
Subsystems
Vehicle safety
Web and internet services
title A Data-driven Control Policy based Driving Safety Analysis System for Autonomous Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-driven%20Control%20Policy%20based%20Driving%20Safety%20Analysis%20System%20for%20Autonomous%20Vehicles&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Kang,%20Liuwang&rft.date=2023-08-15&rft.volume=10&rft.issue=16&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3244756&rft_dat=%3Cproquest_RIE%3E2847967081%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847967081&rft_id=info:pmid/&rft_ieee_id=10044206&rfr_iscdi=true