Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design
This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2023-08, Vol.39 (4), p.1-20 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on robotics |
container_volume | 39 |
creator | Zhang, Zhuqing Song, Yang Huang, Shoudong Xiong, Rong Wang, Yue |
description | This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments. |
doi_str_mv | 10.1109/TRO.2023.3272847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2847965283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129794</ieee_id><sourcerecordid>2847965283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjvzo00abzo3HUwGUr2GtHnVzNrMpGPMv97O7SA8eO_B9wd8ELqkZEQpUTfFy2LECOMjziTLU3mEBlSlNCGpyI_7O8tYwonKT9FZjEtCWKoIH6Bl4TcmWDz2bXSxg7bDprV4Uteucrvv2aySexPB4jcX16ZJZi2EzpkGz31lGvdjOufbW1x8gA9bPA3mCzY-fP7FTF3TQcAPEN17e45OatNEuDjsIXqdTorxUzJfPM7Gd_OkYop1iVIVyzkAVZkU1lIr05SxGqAUdV6JUua5JZaDKo0QUpZA-iFUgTCSMZ7yIbre566C_15D7PTSr0PbV-odGCWyPr9Xkb2qCj7GALVeBfdlwlZTondEdU9U74jqA9HecrW3OAD4J6dMSZXyX6zdcoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965283</pqid></control><display><type>article</type><title>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zhuqing ; Song, Yang ; Huang, Shoudong ; Xiong, Rong ; Wang, Yue</creator><creatorcontrib>Zhang, Zhuqing ; Song, Yang ; Huang, Shoudong ; Xiong, Rong ; Wang, Yue</creatorcontrib><description>This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3272847</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Consistency ; Estimation ; Extended Kalman filter ; Filter design (mathematics) ; invariant extended Kalman filter (EKF) ; Invariants ; Lie groups ; Localization ; Location awareness ; Measurement uncertainty ; Observability ; Odometry ; Robots ; Uncertainty ; visual-inertial localization (VIL)</subject><ispartof>IEEE transactions on robotics, 2023-08, Vol.39 (4), p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</citedby><cites>FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</cites><orcidid>0000-0001-7625-0119 ; 0000-0002-0981-935X ; 0000-0001-9318-9014 ; 0000-0002-6124-4178 ; 0000-0002-5915-9230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129794$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10129794$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhuqing</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.</description><subject>Consistency</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Filter design (mathematics)</subject><subject>invariant extended Kalman filter (EKF)</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Measurement uncertainty</subject><subject>Observability</subject><subject>Odometry</subject><subject>Robots</subject><subject>Uncertainty</subject><subject>visual-inertial localization (VIL)</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjvzo00abzo3HUwGUr2GtHnVzNrMpGPMv97O7SA8eO_B9wd8ELqkZEQpUTfFy2LECOMjziTLU3mEBlSlNCGpyI_7O8tYwonKT9FZjEtCWKoIH6Bl4TcmWDz2bXSxg7bDprV4Uteucrvv2aySexPB4jcX16ZJZi2EzpkGz31lGvdjOufbW1x8gA9bPA3mCzY-fP7FTF3TQcAPEN17e45OatNEuDjsIXqdTorxUzJfPM7Gd_OkYop1iVIVyzkAVZkU1lIr05SxGqAUdV6JUua5JZaDKo0QUpZA-iFUgTCSMZ7yIbre566C_15D7PTSr0PbV-odGCWyPr9Xkb2qCj7GALVeBfdlwlZTondEdU9U74jqA9HecrW3OAD4J6dMSZXyX6zdcoc</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Zhuqing</creator><creator>Song, Yang</creator><creator>Huang, Shoudong</creator><creator>Xiong, Rong</creator><creator>Wang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7625-0119</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-5915-9230</orcidid></search><sort><creationdate>20230801</creationdate><title>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</title><author>Zhang, Zhuqing ; Song, Yang ; Huang, Shoudong ; Xiong, Rong ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Consistency</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Filter design (mathematics)</topic><topic>invariant extended Kalman filter (EKF)</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Measurement uncertainty</topic><topic>Observability</topic><topic>Odometry</topic><topic>Robots</topic><topic>Uncertainty</topic><topic>visual-inertial localization (VIL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhuqing</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhuqing</au><au>Song, Yang</au><au>Huang, Shoudong</au><au>Xiong, Rong</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>39</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3272847</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7625-0119</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-5915-9230</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2023-08, Vol.39 (4), p.1-20 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2847965283 |
source | IEEE Electronic Library (IEL) |
subjects | Consistency Estimation Extended Kalman filter Filter design (mathematics) invariant extended Kalman filter (EKF) Invariants Lie groups Localization Location awareness Measurement uncertainty Observability Odometry Robots Uncertainty visual-inertial localization (VIL) |
title | Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Consistent%20and%20Efficient%20Map-Based%20Visual-Inertial%20Localization:%20Theory%20Framework%20and%20Filter%20Design&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Zhang,%20Zhuqing&rft.date=2023-08-01&rft.volume=39&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3272847&rft_dat=%3Cproquest_RIE%3E2847965283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847965283&rft_id=info:pmid/&rft_ieee_id=10129794&rfr_iscdi=true |