Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design

This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2023-08, Vol.39 (4), p.1-20
Hauptverfasser: Zhang, Zhuqing, Song, Yang, Huang, Shoudong, Xiong, Rong, Wang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 4
container_start_page 1
container_title IEEE transactions on robotics
container_volume 39
creator Zhang, Zhuqing
Song, Yang
Huang, Shoudong
Xiong, Rong
Wang, Yue
description This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.
doi_str_mv 10.1109/TRO.2023.3272847
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2847965283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10129794</ieee_id><sourcerecordid>2847965283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjvzo00abzo3HUwGUr2GtHnVzNrMpGPMv97O7SA8eO_B9wd8ELqkZEQpUTfFy2LECOMjziTLU3mEBlSlNCGpyI_7O8tYwonKT9FZjEtCWKoIH6Bl4TcmWDz2bXSxg7bDprV4Uteucrvv2aySexPB4jcX16ZJZi2EzpkGz31lGvdjOufbW1x8gA9bPA3mCzY-fP7FTF3TQcAPEN17e45OatNEuDjsIXqdTorxUzJfPM7Gd_OkYop1iVIVyzkAVZkU1lIr05SxGqAUdV6JUua5JZaDKo0QUpZA-iFUgTCSMZ7yIbre566C_15D7PTSr0PbV-odGCWyPr9Xkb2qCj7GALVeBfdlwlZTondEdU9U74jqA9HecrW3OAD4J6dMSZXyX6zdcoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965283</pqid></control><display><type>article</type><title>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Zhuqing ; Song, Yang ; Huang, Shoudong ; Xiong, Rong ; Wang, Yue</creator><creatorcontrib>Zhang, Zhuqing ; Song, Yang ; Huang, Shoudong ; Xiong, Rong ; Wang, Yue</creatorcontrib><description>This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3272847</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Consistency ; Estimation ; Extended Kalman filter ; Filter design (mathematics) ; invariant extended Kalman filter (EKF) ; Invariants ; Lie groups ; Localization ; Location awareness ; Measurement uncertainty ; Observability ; Odometry ; Robots ; Uncertainty ; visual-inertial localization (VIL)</subject><ispartof>IEEE transactions on robotics, 2023-08, Vol.39 (4), p.1-20</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</citedby><cites>FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</cites><orcidid>0000-0001-7625-0119 ; 0000-0002-0981-935X ; 0000-0001-9318-9014 ; 0000-0002-6124-4178 ; 0000-0002-5915-9230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10129794$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10129794$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhuqing</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><title>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.</description><subject>Consistency</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Filter design (mathematics)</subject><subject>invariant extended Kalman filter (EKF)</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Measurement uncertainty</subject><subject>Observability</subject><subject>Odometry</subject><subject>Robots</subject><subject>Uncertainty</subject><subject>visual-inertial localization (VIL)</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUx4MoOKd3Dx4Cnjvzo00abzo3HUwGUr2GtHnVzNrMpGPMv97O7SA8eO_B9wd8ELqkZEQpUTfFy2LECOMjziTLU3mEBlSlNCGpyI_7O8tYwonKT9FZjEtCWKoIH6Bl4TcmWDz2bXSxg7bDprV4Uteucrvv2aySexPB4jcX16ZJZi2EzpkGz31lGvdjOufbW1x8gA9bPA3mCzY-fP7FTF3TQcAPEN17e45OatNEuDjsIXqdTorxUzJfPM7Gd_OkYop1iVIVyzkAVZkU1lIr05SxGqAUdV6JUua5JZaDKo0QUpZA-iFUgTCSMZ7yIbre566C_15D7PTSr0PbV-odGCWyPr9Xkb2qCj7GALVeBfdlwlZTondEdU9U74jqA9HecrW3OAD4J6dMSZXyX6zdcoc</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhang, Zhuqing</creator><creator>Song, Yang</creator><creator>Huang, Shoudong</creator><creator>Xiong, Rong</creator><creator>Wang, Yue</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7625-0119</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-5915-9230</orcidid></search><sort><creationdate>20230801</creationdate><title>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</title><author>Zhang, Zhuqing ; Song, Yang ; Huang, Shoudong ; Xiong, Rong ; Wang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-99c283ee19576dd1d74422feeb6f8c6b788d0d3e9ba6677be0be0019e6a722343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Consistency</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Filter design (mathematics)</topic><topic>invariant extended Kalman filter (EKF)</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Measurement uncertainty</topic><topic>Observability</topic><topic>Odometry</topic><topic>Robots</topic><topic>Uncertainty</topic><topic>visual-inertial localization (VIL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhuqing</creatorcontrib><creatorcontrib>Song, Yang</creatorcontrib><creatorcontrib>Huang, Shoudong</creatorcontrib><creatorcontrib>Xiong, Rong</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhuqing</au><au>Song, Yang</au><au>Huang, Shoudong</au><au>Xiong, Rong</au><au>Wang, Yue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>39</volume><issue>4</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article focuses on designing a consistent and efficient filter for visual-inertial localization given a prebuilt map. First, we propose a new Lie group with its algebra based on which a novel invariant extended Kalman filter (invariant EKF) is designed. We theoretically prove that, when we do not consider the uncertainty of map information, the proposed invariant EKF is able to naturally preserve the correct observability properties of the system. To consider the uncertainty of map information, we introduce a Schmidt filter. With the Schmidt filter, the uncertainty of map information can be taken into consideration to avoid overconfident estimation while the computation cost only increases linearly with the size of the map keyframes. In addition, we introduce an easily implemented observability-constrained technique because directly combining the invariant EKF with the Schmidt filter cannot maintain the correct observability properties of the system that considers the uncertainty of map information. Finally, we validate our proposed system's high consistency, accuracy, and efficiency via extensive simulations and real-world experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3272847</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7625-0119</orcidid><orcidid>https://orcid.org/0000-0002-0981-935X</orcidid><orcidid>https://orcid.org/0000-0001-9318-9014</orcidid><orcidid>https://orcid.org/0000-0002-6124-4178</orcidid><orcidid>https://orcid.org/0000-0002-5915-9230</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2023-08, Vol.39 (4), p.1-20
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2847965283
source IEEE Electronic Library (IEL)
subjects Consistency
Estimation
Extended Kalman filter
Filter design (mathematics)
invariant extended Kalman filter (EKF)
Invariants
Lie groups
Localization
Location awareness
Measurement uncertainty
Observability
Odometry
Robots
Uncertainty
visual-inertial localization (VIL)
title Toward Consistent and Efficient Map-Based Visual-Inertial Localization: Theory Framework and Filter Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Consistent%20and%20Efficient%20Map-Based%20Visual-Inertial%20Localization:%20Theory%20Framework%20and%20Filter%20Design&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Zhang,%20Zhuqing&rft.date=2023-08-01&rft.volume=39&rft.issue=4&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3272847&rft_dat=%3Cproquest_RIE%3E2847965283%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847965283&rft_id=info:pmid/&rft_ieee_id=10129794&rfr_iscdi=true