3-D Water Temperature Distribution Observation via Coastal Acoustic Tomography Sensing Network

Water temperature is a critically important parameter for characterizing aquatic ecosystem, particularly in hydrodynamic processes produced by human activities or climate effects in shallow water regions (oceanic pasture, tidal currents, upwelling currents, etc.). The variation of water temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-18
Hauptverfasser: Xu, Shijie, Li, Guangming, Feng, Rendong, Hu, Zhengliang, Xu, Pan, Huang, Haocai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Xu, Shijie
Li, Guangming
Feng, Rendong
Hu, Zhengliang
Xu, Pan
Huang, Haocai
description Water temperature is a critically important parameter for characterizing aquatic ecosystem, particularly in hydrodynamic processes produced by human activities or climate effects in shallow water regions (oceanic pasture, tidal currents, upwelling currents, etc.). The variation of water temperature is a slight and slow process, as technology advances, high-precision observation of the spatial and temporal variation of water temperature on 3-D scale is crucial to environmental research and predictions. To address this issue, 3-D water temperature field is reconstructed by coastal acoustic tomography technology and inversion water temperature variations are obtained. A multiacoustic station experiment was conducted in a reservoir in Changsha, China, from March 4, 2022 to March 5, 2022. Two grid-averaged 3-D inversion methods (Lagrangian-least-squares method and improved-Landweber iteration method) with multistation underwater sensing network are processed to reveal water temperature fluctuations. The rotated empirical orthogonal function is used to further analyze and evaluate the sensitivity of temperature variations in the individual spatial grids. In this article, water temperature distribution and dynamic variation process in the whole spatial structure are obtained and discussed using 3-D sound transmission information, and the feasibility of the methods is verified by comparing them with temperature depth sensor array observation results. This study provides high-precision ideas and methods for 3-D water temperature activities of underwater acoustic tomography network in shallow environments.
doi_str_mv 10.1109/TGRS.2023.3297256
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847953586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847953586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-50869a0c0331ad2bba528134e69237e29aaa8cec601dccdc0f03c1fd104c5ae43</originalsourceid><addsrcrecordid>eNotkF1PwjAYhRujiYj-AO-aeD3sx7q1lwQUTYgkMuOdzbuuwyGss-0w_HtBuTrn4sk5yYPQLSUjSom6L2avyxEjjI84UzkT2RkaUCFkQrI0PUcDQlWWMKnYJboKYU0ITQXNB-iDJ1P8DtF6XNhtZz3E3ls8bUL0TdnHxrV4UQbrd_DXdw3giYMQYYPHxvUhNgYXbutWHrrPPV7aNjTtCr_Y-OP81zW6qGET7M0ph-jt8aGYPCXzxex5Mp4nhjERE0FkpoAYwjmFipUlCCYpT22mGM8tUwAgjTUZoZUxlSE14YbWFSWpEWBTPkR3_7udd9-9DVGvXe_bw6VmMs2V4EJmB4r-U8a7ELytdeebLfi9pkQfNeqjRn3UqE8a-S_y_2an</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847953586</pqid></control><display><type>article</type><title>3-D Water Temperature Distribution Observation via Coastal Acoustic Tomography Sensing Network</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Shijie ; Li, Guangming ; Feng, Rendong ; Hu, Zhengliang ; Xu, Pan ; Huang, Haocai</creator><creatorcontrib>Xu, Shijie ; Li, Guangming ; Feng, Rendong ; Hu, Zhengliang ; Xu, Pan ; Huang, Haocai</creatorcontrib><description>Water temperature is a critically important parameter for characterizing aquatic ecosystem, particularly in hydrodynamic processes produced by human activities or climate effects in shallow water regions (oceanic pasture, tidal currents, upwelling currents, etc.). The variation of water temperature is a slight and slow process, as technology advances, high-precision observation of the spatial and temporal variation of water temperature on 3-D scale is crucial to environmental research and predictions. To address this issue, 3-D water temperature field is reconstructed by coastal acoustic tomography technology and inversion water temperature variations are obtained. A multiacoustic station experiment was conducted in a reservoir in Changsha, China, from March 4, 2022 to March 5, 2022. Two grid-averaged 3-D inversion methods (Lagrangian-least-squares method and improved-Landweber iteration method) with multistation underwater sensing network are processed to reveal water temperature fluctuations. The rotated empirical orthogonal function is used to further analyze and evaluate the sensitivity of temperature variations in the individual spatial grids. In this article, water temperature distribution and dynamic variation process in the whole spatial structure are obtained and discussed using 3-D sound transmission information, and the feasibility of the methods is verified by comparing them with temperature depth sensor array observation results. This study provides high-precision ideas and methods for 3-D water temperature activities of underwater acoustic tomography network in shallow environments.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3297256</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Acoustic tomography ; Acoustics ; Aquatic ecosystems ; Climate effects ; Distribution ; Empirical analysis ; Environmental research ; Least squares method ; Ocean circulation ; Ocean currents ; Orthogonal functions ; Pasture ; Sensitivity analysis ; Sensor arrays ; Shallow water ; Sound transmission ; Technology ; Temperature distribution ; Temperature fields ; Temporal variations ; Tidal currents ; Tomography ; Underwater ; Underwater acoustics ; Upwelling ; Water temperature</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-50869a0c0331ad2bba528134e69237e29aaa8cec601dccdc0f03c1fd104c5ae43</cites><orcidid>0000-0002-6812-9076 ; 0000-0001-8096-0439 ; 0000-0003-3386-0771 ; 0000-0003-2459-4686 ; 0000-0003-0145-5448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Li, Guangming</creatorcontrib><creatorcontrib>Feng, Rendong</creatorcontrib><creatorcontrib>Hu, Zhengliang</creatorcontrib><creatorcontrib>Xu, Pan</creatorcontrib><creatorcontrib>Huang, Haocai</creatorcontrib><title>3-D Water Temperature Distribution Observation via Coastal Acoustic Tomography Sensing Network</title><title>IEEE transactions on geoscience and remote sensing</title><description>Water temperature is a critically important parameter for characterizing aquatic ecosystem, particularly in hydrodynamic processes produced by human activities or climate effects in shallow water regions (oceanic pasture, tidal currents, upwelling currents, etc.). The variation of water temperature is a slight and slow process, as technology advances, high-precision observation of the spatial and temporal variation of water temperature on 3-D scale is crucial to environmental research and predictions. To address this issue, 3-D water temperature field is reconstructed by coastal acoustic tomography technology and inversion water temperature variations are obtained. A multiacoustic station experiment was conducted in a reservoir in Changsha, China, from March 4, 2022 to March 5, 2022. Two grid-averaged 3-D inversion methods (Lagrangian-least-squares method and improved-Landweber iteration method) with multistation underwater sensing network are processed to reveal water temperature fluctuations. The rotated empirical orthogonal function is used to further analyze and evaluate the sensitivity of temperature variations in the individual spatial grids. In this article, water temperature distribution and dynamic variation process in the whole spatial structure are obtained and discussed using 3-D sound transmission information, and the feasibility of the methods is verified by comparing them with temperature depth sensor array observation results. This study provides high-precision ideas and methods for 3-D water temperature activities of underwater acoustic tomography network in shallow environments.</description><subject>Acoustic tomography</subject><subject>Acoustics</subject><subject>Aquatic ecosystems</subject><subject>Climate effects</subject><subject>Distribution</subject><subject>Empirical analysis</subject><subject>Environmental research</subject><subject>Least squares method</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Orthogonal functions</subject><subject>Pasture</subject><subject>Sensitivity analysis</subject><subject>Sensor arrays</subject><subject>Shallow water</subject><subject>Sound transmission</subject><subject>Technology</subject><subject>Temperature distribution</subject><subject>Temperature fields</subject><subject>Temporal variations</subject><subject>Tidal currents</subject><subject>Tomography</subject><subject>Underwater</subject><subject>Underwater acoustics</subject><subject>Upwelling</subject><subject>Water temperature</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkF1PwjAYhRujiYj-AO-aeD3sx7q1lwQUTYgkMuOdzbuuwyGss-0w_HtBuTrn4sk5yYPQLSUjSom6L2avyxEjjI84UzkT2RkaUCFkQrI0PUcDQlWWMKnYJboKYU0ITQXNB-iDJ1P8DtF6XNhtZz3E3ls8bUL0TdnHxrV4UQbrd_DXdw3giYMQYYPHxvUhNgYXbutWHrrPPV7aNjTtCr_Y-OP81zW6qGET7M0ph-jt8aGYPCXzxex5Mp4nhjERE0FkpoAYwjmFipUlCCYpT22mGM8tUwAgjTUZoZUxlSE14YbWFSWpEWBTPkR3_7udd9-9DVGvXe_bw6VmMs2V4EJmB4r-U8a7ELytdeebLfi9pkQfNeqjRn3UqE8a-S_y_2an</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Xu, Shijie</creator><creator>Li, Guangming</creator><creator>Feng, Rendong</creator><creator>Hu, Zhengliang</creator><creator>Xu, Pan</creator><creator>Huang, Haocai</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6812-9076</orcidid><orcidid>https://orcid.org/0000-0001-8096-0439</orcidid><orcidid>https://orcid.org/0000-0003-3386-0771</orcidid><orcidid>https://orcid.org/0000-0003-2459-4686</orcidid><orcidid>https://orcid.org/0000-0003-0145-5448</orcidid></search><sort><creationdate>2023</creationdate><title>3-D Water Temperature Distribution Observation via Coastal Acoustic Tomography Sensing Network</title><author>Xu, Shijie ; Li, Guangming ; Feng, Rendong ; Hu, Zhengliang ; Xu, Pan ; Huang, Haocai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-50869a0c0331ad2bba528134e69237e29aaa8cec601dccdc0f03c1fd104c5ae43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic tomography</topic><topic>Acoustics</topic><topic>Aquatic ecosystems</topic><topic>Climate effects</topic><topic>Distribution</topic><topic>Empirical analysis</topic><topic>Environmental research</topic><topic>Least squares method</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Orthogonal functions</topic><topic>Pasture</topic><topic>Sensitivity analysis</topic><topic>Sensor arrays</topic><topic>Shallow water</topic><topic>Sound transmission</topic><topic>Technology</topic><topic>Temperature distribution</topic><topic>Temperature fields</topic><topic>Temporal variations</topic><topic>Tidal currents</topic><topic>Tomography</topic><topic>Underwater</topic><topic>Underwater acoustics</topic><topic>Upwelling</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shijie</creatorcontrib><creatorcontrib>Li, Guangming</creatorcontrib><creatorcontrib>Feng, Rendong</creatorcontrib><creatorcontrib>Hu, Zhengliang</creatorcontrib><creatorcontrib>Xu, Pan</creatorcontrib><creatorcontrib>Huang, Haocai</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shijie</au><au>Li, Guangming</au><au>Feng, Rendong</au><au>Hu, Zhengliang</au><au>Xu, Pan</au><au>Huang, Haocai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3-D Water Temperature Distribution Observation via Coastal Acoustic Tomography Sensing Network</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>Water temperature is a critically important parameter for characterizing aquatic ecosystem, particularly in hydrodynamic processes produced by human activities or climate effects in shallow water regions (oceanic pasture, tidal currents, upwelling currents, etc.). The variation of water temperature is a slight and slow process, as technology advances, high-precision observation of the spatial and temporal variation of water temperature on 3-D scale is crucial to environmental research and predictions. To address this issue, 3-D water temperature field is reconstructed by coastal acoustic tomography technology and inversion water temperature variations are obtained. A multiacoustic station experiment was conducted in a reservoir in Changsha, China, from March 4, 2022 to March 5, 2022. Two grid-averaged 3-D inversion methods (Lagrangian-least-squares method and improved-Landweber iteration method) with multistation underwater sensing network are processed to reveal water temperature fluctuations. The rotated empirical orthogonal function is used to further analyze and evaluate the sensitivity of temperature variations in the individual spatial grids. In this article, water temperature distribution and dynamic variation process in the whole spatial structure are obtained and discussed using 3-D sound transmission information, and the feasibility of the methods is verified by comparing them with temperature depth sensor array observation results. This study provides high-precision ideas and methods for 3-D water temperature activities of underwater acoustic tomography network in shallow environments.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2023.3297256</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6812-9076</orcidid><orcidid>https://orcid.org/0000-0001-8096-0439</orcidid><orcidid>https://orcid.org/0000-0003-3386-0771</orcidid><orcidid>https://orcid.org/0000-0003-2459-4686</orcidid><orcidid>https://orcid.org/0000-0003-0145-5448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-18
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2847953586
source IEEE Electronic Library (IEL)
subjects Acoustic tomography
Acoustics
Aquatic ecosystems
Climate effects
Distribution
Empirical analysis
Environmental research
Least squares method
Ocean circulation
Ocean currents
Orthogonal functions
Pasture
Sensitivity analysis
Sensor arrays
Shallow water
Sound transmission
Technology
Temperature distribution
Temperature fields
Temporal variations
Tidal currents
Tomography
Underwater
Underwater acoustics
Upwelling
Water temperature
title 3-D Water Temperature Distribution Observation via Coastal Acoustic Tomography Sensing Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3-D%20Water%20Temperature%20Distribution%20Observation%20via%20Coastal%20Acoustic%20Tomography%20Sensing%20Network&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xu,%20Shijie&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2023.3297256&rft_dat=%3Cproquest_cross%3E2847953586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847953586&rft_id=info:pmid/&rfr_iscdi=true