Neural network representation of time integrators

Deep neural network (DNN) architectures are constructed that are the exact equivalent of explicit Runge–Kutta schemes for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way, the only task left for physics‐based integrators is the DNN app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2023-09, Vol.124 (18), p.4192-4198
Hauptverfasser: Löhner, Rainald, Antil, Harbir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4198
container_issue 18
container_start_page 4192
container_title International journal for numerical methods in engineering
container_volume 124
creator Löhner, Rainald
Antil, Harbir
description Deep neural network (DNN) architectures are constructed that are the exact equivalent of explicit Runge–Kutta schemes for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way, the only task left for physics‐based integrators is the DNN approximation of the right‐hand side. This allows to clearly delineate the approximation estimates for right‐hand side errors and time integration errors. The architecture required for the integration of a simple mass‐damper‐stiffness case is included as an example.
doi_str_mv 10.1002/nme.7306
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847678050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847678050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-337c40cbfdd3dfe357f897ef19cb63c53821722eec5008d7f98e476ea1590f403</originalsourceid><addsrcrecordid>eNp10EFLwzAUwPEgCtYp-BEKXrx0viRNkxxlzCnMedFz6NIX6VybmaSMfXs759XTO7wf78GfkFsKUwrAHvoOp5JDdUYyCloWwECek2xc6UJoRS_JVYwbAEoF8IzQFQ6h3uY9pr0PX3nAXcCIfapT6_vcuzy1HeZtn_Az1MmHeE0uXL2NePM3J-Tjaf4-ey6Wb4uX2eOysEyUVcG5tCXYtWsa3jjkQjqlJTqq7briVnDFqGQM0QoA1UinFZaywpoKDa4EPiF3p7u74L8HjMls_BD68aVhapRSgTiq-5OywccY0JldaLs6HAwFcwxixiDmGGSkxYnu2y0e_nVm9Tr_9T-zfGCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847678050</pqid></control><display><type>article</type><title>Neural network representation of time integrators</title><source>Access via Wiley Online Library</source><creator>Löhner, Rainald ; Antil, Harbir</creator><creatorcontrib>Löhner, Rainald ; Antil, Harbir</creatorcontrib><description>Deep neural network (DNN) architectures are constructed that are the exact equivalent of explicit Runge–Kutta schemes for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way, the only task left for physics‐based integrators is the DNN approximation of the right‐hand side. This allows to clearly delineate the approximation estimates for right‐hand side errors and time integration errors. The architecture required for the integration of a simple mass‐damper‐stiffness case is included as an example.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7306</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Approximation ; Artificial neural networks ; deep neural networks ; Errors ; Integrators ; Mathematical analysis ; numerical integration ; Runge-Kutta method ; Runge–Kutta ; Time integration</subject><ispartof>International journal for numerical methods in engineering, 2023-09, Vol.124 (18), p.4192-4198</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2546-337c40cbfdd3dfe357f897ef19cb63c53821722eec5008d7f98e476ea1590f403</cites><orcidid>0000-0003-0083-5131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7306$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7306$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Löhner, Rainald</creatorcontrib><creatorcontrib>Antil, Harbir</creatorcontrib><title>Neural network representation of time integrators</title><title>International journal for numerical methods in engineering</title><description>Deep neural network (DNN) architectures are constructed that are the exact equivalent of explicit Runge–Kutta schemes for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way, the only task left for physics‐based integrators is the DNN approximation of the right‐hand side. This allows to clearly delineate the approximation estimates for right‐hand side errors and time integration errors. The architecture required for the integration of a simple mass‐damper‐stiffness case is included as an example.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>deep neural networks</subject><subject>Errors</subject><subject>Integrators</subject><subject>Mathematical analysis</subject><subject>numerical integration</subject><subject>Runge-Kutta method</subject><subject>Runge–Kutta</subject><subject>Time integration</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUwPEgCtYp-BEKXrx0viRNkxxlzCnMedFz6NIX6VybmaSMfXs759XTO7wf78GfkFsKUwrAHvoOp5JDdUYyCloWwECek2xc6UJoRS_JVYwbAEoF8IzQFQ6h3uY9pr0PX3nAXcCIfapT6_vcuzy1HeZtn_Az1MmHeE0uXL2NePM3J-Tjaf4-ey6Wb4uX2eOysEyUVcG5tCXYtWsa3jjkQjqlJTqq7briVnDFqGQM0QoA1UinFZaywpoKDa4EPiF3p7u74L8HjMls_BD68aVhapRSgTiq-5OywccY0JldaLs6HAwFcwxixiDmGGSkxYnu2y0e_nVm9Tr_9T-zfGCw</recordid><startdate>20230930</startdate><enddate>20230930</enddate><creator>Löhner, Rainald</creator><creator>Antil, Harbir</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0083-5131</orcidid></search><sort><creationdate>20230930</creationdate><title>Neural network representation of time integrators</title><author>Löhner, Rainald ; Antil, Harbir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-337c40cbfdd3dfe357f897ef19cb63c53821722eec5008d7f98e476ea1590f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>deep neural networks</topic><topic>Errors</topic><topic>Integrators</topic><topic>Mathematical analysis</topic><topic>numerical integration</topic><topic>Runge-Kutta method</topic><topic>Runge–Kutta</topic><topic>Time integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Löhner, Rainald</creatorcontrib><creatorcontrib>Antil, Harbir</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Löhner, Rainald</au><au>Antil, Harbir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network representation of time integrators</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2023-09-30</date><risdate>2023</risdate><volume>124</volume><issue>18</issue><spage>4192</spage><epage>4198</epage><pages>4192-4198</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Deep neural network (DNN) architectures are constructed that are the exact equivalent of explicit Runge–Kutta schemes for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way, the only task left for physics‐based integrators is the DNN approximation of the right‐hand side. This allows to clearly delineate the approximation estimates for right‐hand side errors and time integration errors. The architecture required for the integration of a simple mass‐damper‐stiffness case is included as an example.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.7306</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0083-5131</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2023-09, Vol.124 (18), p.4192-4198
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2847678050
source Access via Wiley Online Library
subjects Approximation
Artificial neural networks
deep neural networks
Errors
Integrators
Mathematical analysis
numerical integration
Runge-Kutta method
Runge–Kutta
Time integration
title Neural network representation of time integrators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20representation%20of%20time%20integrators&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=L%C3%B6hner,%20Rainald&rft.date=2023-09-30&rft.volume=124&rft.issue=18&rft.spage=4192&rft.epage=4198&rft.pages=4192-4198&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7306&rft_dat=%3Cproquest_cross%3E2847678050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847678050&rft_id=info:pmid/&rfr_iscdi=true