On the analyticity of the maximal extension of a number field with prescribed ramification and splitting

We determine all the \(p\)-adic analytic groups that are realizable as Galois groups of the maximal pro-\(p\) extensions of number fields with prescribed ramification and splitting under an assumption which allows us to move away from the Tame Fontaine-Mazur conjecture.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Lim, Donghyeok, Maire, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lim, Donghyeok
Maire, Christian
description We determine all the \(p\)-adic analytic groups that are realizable as Galois groups of the maximal pro-\(p\) extensions of number fields with prescribed ramification and splitting under an assumption which allows us to move away from the Tame Fontaine-Mazur conjecture.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2847576792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847576792</sourcerecordid><originalsourceid>FETCH-proquest_journals_28475767923</originalsourceid><addsrcrecordid>eNqNjs0KgkAURocgSMp3uNA6sFHT1lG0a9NernrNG-NoM1eqt--HHqDVB-ecxTdRgY7j9SpPtJ6p0PtrFEV6k-k0jQPVnixIS4AWzVO4YnlC33xRhw_u0AA9hKzn3n4Egh27khw0TKaGO0sLgyNfOS6pBocdN1yhfHK0NfjBsAjby0JNGzSewt_O1fKwP--Oq8H1t5G8FNd-dO8XvtB5kqXZJtvq-L_qBYIdSG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847576792</pqid></control><display><type>article</type><title>On the analyticity of the maximal extension of a number field with prescribed ramification and splitting</title><source>Free E- Journals</source><creator>Lim, Donghyeok ; Maire, Christian</creator><creatorcontrib>Lim, Donghyeok ; Maire, Christian</creatorcontrib><description>We determine all the \(p\)-adic analytic groups that are realizable as Galois groups of the maximal pro-\(p\) extensions of number fields with prescribed ramification and splitting under an assumption which allows us to move away from the Tame Fontaine-Mazur conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Number theory ; Splitting</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lim, Donghyeok</creatorcontrib><creatorcontrib>Maire, Christian</creatorcontrib><title>On the analyticity of the maximal extension of a number field with prescribed ramification and splitting</title><title>arXiv.org</title><description>We determine all the \(p\)-adic analytic groups that are realizable as Galois groups of the maximal pro-\(p\) extensions of number fields with prescribed ramification and splitting under an assumption which allows us to move away from the Tame Fontaine-Mazur conjecture.</description><subject>Number theory</subject><subject>Splitting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KgkAURocgSMp3uNA6sFHT1lG0a9NernrNG-NoM1eqt--HHqDVB-ecxTdRgY7j9SpPtJ6p0PtrFEV6k-k0jQPVnixIS4AWzVO4YnlC33xRhw_u0AA9hKzn3n4Egh27khw0TKaGO0sLgyNfOS6pBocdN1yhfHK0NfjBsAjby0JNGzSewt_O1fKwP--Oq8H1t5G8FNd-dO8XvtB5kqXZJtvq-L_qBYIdSG0</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Lim, Donghyeok</creator><creator>Maire, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230807</creationdate><title>On the analyticity of the maximal extension of a number field with prescribed ramification and splitting</title><author>Lim, Donghyeok ; Maire, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28475767923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Number theory</topic><topic>Splitting</topic><toplevel>online_resources</toplevel><creatorcontrib>Lim, Donghyeok</creatorcontrib><creatorcontrib>Maire, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Donghyeok</au><au>Maire, Christian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the analyticity of the maximal extension of a number field with prescribed ramification and splitting</atitle><jtitle>arXiv.org</jtitle><date>2023-08-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We determine all the \(p\)-adic analytic groups that are realizable as Galois groups of the maximal pro-\(p\) extensions of number fields with prescribed ramification and splitting under an assumption which allows us to move away from the Tame Fontaine-Mazur conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2847576792
source Free E- Journals
subjects Number theory
Splitting
title On the analyticity of the maximal extension of a number field with prescribed ramification and splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20analyticity%20of%20the%20maximal%20extension%20of%20a%20number%20field%20with%20prescribed%20ramification%20and%20splitting&rft.jtitle=arXiv.org&rft.au=Lim,%20Donghyeok&rft.date=2023-08-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2847576792%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847576792&rft_id=info:pmid/&rfr_iscdi=true