Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects
We propose an algorithm for decoding phase images that has algorithmic complexity . The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational compl...
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2023-06, Vol.17 (2), p.291-295 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 295 |
---|---|
container_issue | 2 |
container_start_page | 291 |
container_title | Journal of applied and industrial mathematics |
container_volume | 17 |
creator | Dvoinishnikov, S. V. Kulikov, D. V. Meledin, V. G. Rakhmanov, V. V. |
description | We propose an algorithm for decoding phase images that has algorithmic complexity
. The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images. |
doi_str_mv | 10.1134/S1990478923020072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847445798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847445798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwHXo3k1j2VptRYqFaxLGTLpnemUzqQmM4v-vSkVXYire7jnweEgdEvJPaVcPLxRY4hQ2jBOGCGKXaDB6ZUJZdTlD9bmGo1irAvCKZNcSjZAH69bGwEvGlsBnoHzm7qt8GRf-VB32waXPuD1NgBks7qBNta-tXs8B99AF474BWzsAySmi9iXeHZsbVM7vCp24Lp4g65Ku48w-r5D9P70uJ4-Z8vVfDGdLDPHUpXMKudEoZUpKJGCWCBjI4zkCZnCGasdcSVI5ahmZMydptJuJADVvFDSlXyI7s65h-A_e4hdvvN9SE1jzrRQQoyV0UlFzyoXfIwByvwQ6saGY05Jfhoy_zNk8rCzJyZtW0H4Tf7f9AVsf3R3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847445798</pqid></control><display><type>article</type><title>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dvoinishnikov, S. V. ; Kulikov, D. V. ; Meledin, V. G. ; Rakhmanov, V. V.</creator><creatorcontrib>Dvoinishnikov, S. V. ; Kulikov, D. V. ; Meledin, V. G. ; Rakhmanov, V. V.</creatorcontrib><description>We propose an algorithm for decoding phase images that has algorithmic complexity
. The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478923020072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Complexity ; Decoding ; Exact solutions ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Search algorithms</subject><ispartof>Journal of applied and industrial mathematics, 2023-06, Vol.17 (2), p.291-295</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</citedby><cites>FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478923020072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478923020072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dvoinishnikov, S. V.</creatorcontrib><creatorcontrib>Kulikov, D. V.</creatorcontrib><creatorcontrib>Meledin, V. G.</creatorcontrib><creatorcontrib>Rakhmanov, V. V.</creatorcontrib><title>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>We propose an algorithm for decoding phase images that has algorithmic complexity
. The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Decoding</subject><subject>Exact solutions</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Search algorithms</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgqf0AdwHXo3k1j2VptRYqFaxLGTLpnemUzqQmM4v-vSkVXYire7jnweEgdEvJPaVcPLxRY4hQ2jBOGCGKXaDB6ZUJZdTlD9bmGo1irAvCKZNcSjZAH69bGwEvGlsBnoHzm7qt8GRf-VB32waXPuD1NgBks7qBNta-tXs8B99AF474BWzsAySmi9iXeHZsbVM7vCp24Lp4g65Ku48w-r5D9P70uJ4-Z8vVfDGdLDPHUpXMKudEoZUpKJGCWCBjI4zkCZnCGasdcSVI5ahmZMydptJuJADVvFDSlXyI7s65h-A_e4hdvvN9SE1jzrRQQoyV0UlFzyoXfIwByvwQ6saGY05Jfhoy_zNk8rCzJyZtW0H4Tf7f9AVsf3R3</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Dvoinishnikov, S. V.</creator><creator>Kulikov, D. V.</creator><creator>Meledin, V. G.</creator><creator>Rakhmanov, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20230601</creationdate><title>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</title><author>Dvoinishnikov, S. V. ; Kulikov, D. V. ; Meledin, V. G. ; Rakhmanov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Decoding</topic><topic>Exact solutions</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvoinishnikov, S. V.</creatorcontrib><creatorcontrib>Kulikov, D. V.</creatorcontrib><creatorcontrib>Meledin, V. G.</creatorcontrib><creatorcontrib>Rakhmanov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvoinishnikov, S. V.</au><au>Kulikov, D. V.</au><au>Meledin, V. G.</au><au>Rakhmanov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>291</spage><epage>295</epage><pages>291-295</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>We propose an algorithm for decoding phase images that has algorithmic complexity
. The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478923020072</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-4789 |
ispartof | Journal of applied and industrial mathematics, 2023-06, Vol.17 (2), p.291-295 |
issn | 1990-4789 1990-4797 |
language | eng |
recordid | cdi_proquest_journals_2847445798 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Complexity Decoding Exact solutions Iterative methods Mathematics Mathematics and Statistics Search algorithms |
title | Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Image%20Decoding%20Algorithm%20for%20Three-Dimensional%20Geometry%20Measurements%20of%20Dynamic%20Objects&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Dvoinishnikov,%20S.%20V.&rft.date=2023-06-01&rft.volume=17&rft.issue=2&rft.spage=291&rft.epage=295&rft.pages=291-295&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478923020072&rft_dat=%3Cproquest_cross%3E2847445798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847445798&rft_id=info:pmid/&rfr_iscdi=true |