Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects

We propose an algorithm for decoding phase images that has algorithmic complexity . The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and industrial mathematics 2023-06, Vol.17 (2), p.291-295
Hauptverfasser: Dvoinishnikov, S. V., Kulikov, D. V., Meledin, V. G., Rakhmanov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 2
container_start_page 291
container_title Journal of applied and industrial mathematics
container_volume 17
creator Dvoinishnikov, S. V.
Kulikov, D. V.
Meledin, V. G.
Rakhmanov, V. V.
description We propose an algorithm for decoding phase images that has algorithmic complexity . The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.
doi_str_mv 10.1134/S1990478923020072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847445798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847445798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgqf0AdwHXo3k1j2VptRYqFaxLGTLpnemUzqQmM4v-vSkVXYire7jnweEgdEvJPaVcPLxRY4hQ2jBOGCGKXaDB6ZUJZdTlD9bmGo1irAvCKZNcSjZAH69bGwEvGlsBnoHzm7qt8GRf-VB32waXPuD1NgBks7qBNta-tXs8B99AF474BWzsAySmi9iXeHZsbVM7vCp24Lp4g65Ku48w-r5D9P70uJ4-Z8vVfDGdLDPHUpXMKudEoZUpKJGCWCBjI4zkCZnCGasdcSVI5ahmZMydptJuJADVvFDSlXyI7s65h-A_e4hdvvN9SE1jzrRQQoyV0UlFzyoXfIwByvwQ6saGY05Jfhoy_zNk8rCzJyZtW0H4Tf7f9AVsf3R3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847445798</pqid></control><display><type>article</type><title>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dvoinishnikov, S. V. ; Kulikov, D. V. ; Meledin, V. G. ; Rakhmanov, V. V.</creator><creatorcontrib>Dvoinishnikov, S. V. ; Kulikov, D. V. ; Meledin, V. G. ; Rakhmanov, V. V.</creatorcontrib><description>We propose an algorithm for decoding phase images that has algorithmic complexity . The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478923020072</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Complexity ; Decoding ; Exact solutions ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Search algorithms</subject><ispartof>Journal of applied and industrial mathematics, 2023-06, Vol.17 (2), p.291-295</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</citedby><cites>FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478923020072$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478923020072$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dvoinishnikov, S. V.</creatorcontrib><creatorcontrib>Kulikov, D. V.</creatorcontrib><creatorcontrib>Meledin, V. G.</creatorcontrib><creatorcontrib>Rakhmanov, V. V.</creatorcontrib><title>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>We propose an algorithm for decoding phase images that has algorithmic complexity . The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Decoding</subject><subject>Exact solutions</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Search algorithms</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKAzEUDaJgqf0AdwHXo3k1j2VptRYqFaxLGTLpnemUzqQmM4v-vSkVXYire7jnweEgdEvJPaVcPLxRY4hQ2jBOGCGKXaDB6ZUJZdTlD9bmGo1irAvCKZNcSjZAH69bGwEvGlsBnoHzm7qt8GRf-VB32waXPuD1NgBks7qBNta-tXs8B99AF474BWzsAySmi9iXeHZsbVM7vCp24Lp4g65Ku48w-r5D9P70uJ4-Z8vVfDGdLDPHUpXMKudEoZUpKJGCWCBjI4zkCZnCGasdcSVI5ahmZMydptJuJADVvFDSlXyI7s65h-A_e4hdvvN9SE1jzrRQQoyV0UlFzyoXfIwByvwQ6saGY05Jfhoy_zNk8rCzJyZtW0H4Tf7f9AVsf3R3</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Dvoinishnikov, S. V.</creator><creator>Kulikov, D. V.</creator><creator>Meledin, V. G.</creator><creator>Rakhmanov, V. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20230601</creationdate><title>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</title><author>Dvoinishnikov, S. V. ; Kulikov, D. V. ; Meledin, V. G. ; Rakhmanov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2312-a7cc4b879b10640ae05949630ae9bc9a8c0cfe67c182053c816ad6ee183b76cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Decoding</topic><topic>Exact solutions</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dvoinishnikov, S. V.</creatorcontrib><creatorcontrib>Kulikov, D. V.</creatorcontrib><creatorcontrib>Meledin, V. G.</creatorcontrib><creatorcontrib>Rakhmanov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dvoinishnikov, S. V.</au><au>Kulikov, D. V.</au><au>Meledin, V. G.</au><au>Rakhmanov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>17</volume><issue>2</issue><spage>291</spage><epage>295</epage><pages>291-295</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>We propose an algorithm for decoding phase images that has algorithmic complexity . The method is based on an iterative search for the minimum deviation of the model function from the measurement results. The use of an interval search algorithm permitted considerably reducing the computational complexity of the algorithm. The error of the proposed method is comparable to the error of the phase image decoding method based on the analytical solution of the system of equations describing the intensity in the phase images.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478923020072</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2023-06, Vol.17 (2), p.291-295
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_journals_2847445798
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Complexity
Decoding
Exact solutions
Iterative methods
Mathematics
Mathematics and Statistics
Search algorithms
title Phase Image Decoding Algorithm for Three-Dimensional Geometry Measurements of Dynamic Objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A40%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Image%20Decoding%20Algorithm%20for%20Three-Dimensional%20Geometry%20Measurements%20of%20Dynamic%20Objects&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Dvoinishnikov,%20S.%20V.&rft.date=2023-06-01&rft.volume=17&rft.issue=2&rft.spage=291&rft.epage=295&rft.pages=291-295&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478923020072&rft_dat=%3Cproquest_cross%3E2847445798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847445798&rft_id=info:pmid/&rfr_iscdi=true