Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network

Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological oppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Latvian Journal of Physics and Technical Sciences 2023-08, Vol.60 (4), p.61-76
Hauptverfasser: Braunfelds, J., Zvirbule, K., Senkans, U., Murnieks, R., Lyashuk, I., Porins, J., Spolitis, S., Bobrovs, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 4
container_start_page 61
container_title Latvian Journal of Physics and Technical Sciences
container_volume 60
creator Braunfelds, J.
Zvirbule, K.
Senkans, U.
Murnieks, R.
Lyashuk, I.
Porins, J.
Spolitis, S.
Bobrovs, V.
description Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological opportunities for network development, and energy efficiency by substituting a power-demanding laser array. In this research, OFCs are generated for the purpose of combined network application of DWDM-PON and FBG optical sensors. The paper also investigates compatibility scenarios with OFCs in such systems. The mathematical simulation model has been developed and the performance of FWM-OFC based 8-channel 50 GHz spaced non-return-to-zero on-off keying (NRZ-OOK) modulated DWDM-PON transmission system, operating at 50 km single-mode fibre (SMF) with a bit rate of at least 10 Gbps embedded with 7 FBG optical temperature sensors, has been studied. As it is shown, FWM application results in OFC source that has fluctuations of the individual comb tones of less than 3 dB in power, and with an extinction ratio of about 33 dB for operation range of 192.9–193.25 THz, acting as a unified light source for all the data transmission channels. Embedded FBG optical sensors network causes negligible 0.3 dB power penalty.
doi_str_mv 10.2478/lpts-2023-0025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847315570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847315570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-219306c0c85cd46688ad89dbcff295cb3495d5a859e3abc088456650d197ba763</originalsourceid><addsrcrecordid>eNptkDtPwzAUhS0EElXpymyJOcWxY8cRUx-kILV0KKij5dgOBPLCdlT135OoIBiY7hnOd670AXAdoimOYn5btt4FGGESIITpGRhhTGnAecLO_-RLMHGuyBBhLCSIoBFQs7YtCyV90dSwyWG63wRz6YyG23QB88bC5X65gdvW96USLpqq6uqf_u7ovKngofBv8L7KjNY9l85XcGdq16NPxh8a-3EFLnJZOjP5vmPwkt4_Lx6C9Xb1uJitA0XCyAc4TAhiCilOlY4Y41xqnuhM5TlOqMpIlFBNJaeJITJTiPOIMkaRDpM4kzEjY3Bz2m1t89kZ58V709m6fykwj2ISUhqjvjU9tZRtnLMmF60tKmmPIkRicCkGl2JwKQaXPXB3Ag6y9MZq82q7Yx9-1_8HGYp6y18L7nnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847315570</pqid></control><display><type>article</type><title>Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network</title><source>Walter De Gruyter: Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Braunfelds, J. ; Zvirbule, K. ; Senkans, U. ; Murnieks, R. ; Lyashuk, I. ; Porins, J. ; Spolitis, S. ; Bobrovs, V.</creator><creatorcontrib>Braunfelds, J. ; Zvirbule, K. ; Senkans, U. ; Murnieks, R. ; Lyashuk, I. ; Porins, J. ; Spolitis, S. ; Bobrovs, V.</creatorcontrib><description>Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological opportunities for network development, and energy efficiency by substituting a power-demanding laser array. In this research, OFCs are generated for the purpose of combined network application of DWDM-PON and FBG optical sensors. The paper also investigates compatibility scenarios with OFCs in such systems. The mathematical simulation model has been developed and the performance of FWM-OFC based 8-channel 50 GHz spaced non-return-to-zero on-off keying (NRZ-OOK) modulated DWDM-PON transmission system, operating at 50 km single-mode fibre (SMF) with a bit rate of at least 10 Gbps embedded with 7 FBG optical temperature sensors, has been studied. As it is shown, FWM application results in OFC source that has fluctuations of the individual comb tones of less than 3 dB in power, and with an extinction ratio of about 33 dB for operation range of 192.9–193.25 THz, acting as a unified light source for all the data transmission channels. Embedded FBG optical sensors network causes negligible 0.3 dB power penalty.</description><identifier>ISSN: 2255-8896</identifier><identifier>ISSN: 0868-8257</identifier><identifier>EISSN: 2255-8896</identifier><identifier>EISSN: 2199-6156</identifier><identifier>DOI: 10.2478/lpts-2023-0025</identifier><language>eng</language><publisher>Riga: Sciendo</publisher><subject>Bragg gratings ; Communications systems ; Data transmission ; Dense wavelength division multiplexed passive optical network (DWDM-PON) ; Dense Wavelength Division Multiplexing ; fibre Bragg grating (FBG) optical sensors ; Four-wave mixing ; four-wave mixing (FWM) ; highly nonlinear optical fibre (HNLF) ; Laser arrays ; Light sources ; non-return-to-zero on-off keying (NRZ-OOK) ; On-Off Keying ; Optical communication ; Optical frequency ; optical frequency combs (OFC) ; Optical measuring instruments ; Power management ; Sensors ; Temperature sensors</subject><ispartof>Latvian Journal of Physics and Technical Sciences, 2023-08, Vol.60 (4), p.61-76</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-219306c0c85cd46688ad89dbcff295cb3495d5a859e3abc088456650d197ba763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/lpts-2023-0025$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/lpts-2023-0025$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,75913,75914</link.rule.ids></links><search><creatorcontrib>Braunfelds, J.</creatorcontrib><creatorcontrib>Zvirbule, K.</creatorcontrib><creatorcontrib>Senkans, U.</creatorcontrib><creatorcontrib>Murnieks, R.</creatorcontrib><creatorcontrib>Lyashuk, I.</creatorcontrib><creatorcontrib>Porins, J.</creatorcontrib><creatorcontrib>Spolitis, S.</creatorcontrib><creatorcontrib>Bobrovs, V.</creatorcontrib><title>Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network</title><title>Latvian Journal of Physics and Technical Sciences</title><description>Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological opportunities for network development, and energy efficiency by substituting a power-demanding laser array. In this research, OFCs are generated for the purpose of combined network application of DWDM-PON and FBG optical sensors. The paper also investigates compatibility scenarios with OFCs in such systems. The mathematical simulation model has been developed and the performance of FWM-OFC based 8-channel 50 GHz spaced non-return-to-zero on-off keying (NRZ-OOK) modulated DWDM-PON transmission system, operating at 50 km single-mode fibre (SMF) with a bit rate of at least 10 Gbps embedded with 7 FBG optical temperature sensors, has been studied. As it is shown, FWM application results in OFC source that has fluctuations of the individual comb tones of less than 3 dB in power, and with an extinction ratio of about 33 dB for operation range of 192.9–193.25 THz, acting as a unified light source for all the data transmission channels. Embedded FBG optical sensors network causes negligible 0.3 dB power penalty.</description><subject>Bragg gratings</subject><subject>Communications systems</subject><subject>Data transmission</subject><subject>Dense wavelength division multiplexed passive optical network (DWDM-PON)</subject><subject>Dense Wavelength Division Multiplexing</subject><subject>fibre Bragg grating (FBG) optical sensors</subject><subject>Four-wave mixing</subject><subject>four-wave mixing (FWM)</subject><subject>highly nonlinear optical fibre (HNLF)</subject><subject>Laser arrays</subject><subject>Light sources</subject><subject>non-return-to-zero on-off keying (NRZ-OOK)</subject><subject>On-Off Keying</subject><subject>Optical communication</subject><subject>Optical frequency</subject><subject>optical frequency combs (OFC)</subject><subject>Optical measuring instruments</subject><subject>Power management</subject><subject>Sensors</subject><subject>Temperature sensors</subject><issn>2255-8896</issn><issn>0868-8257</issn><issn>2255-8896</issn><issn>2199-6156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkDtPwzAUhS0EElXpymyJOcWxY8cRUx-kILV0KKij5dgOBPLCdlT135OoIBiY7hnOd670AXAdoimOYn5btt4FGGESIITpGRhhTGnAecLO_-RLMHGuyBBhLCSIoBFQs7YtCyV90dSwyWG63wRz6YyG23QB88bC5X65gdvW96USLpqq6uqf_u7ovKngofBv8L7KjNY9l85XcGdq16NPxh8a-3EFLnJZOjP5vmPwkt4_Lx6C9Xb1uJitA0XCyAc4TAhiCilOlY4Y41xqnuhM5TlOqMpIlFBNJaeJITJTiPOIMkaRDpM4kzEjY3Bz2m1t89kZ58V709m6fykwj2ISUhqjvjU9tZRtnLMmF60tKmmPIkRicCkGl2JwKQaXPXB3Ag6y9MZq82q7Yx9-1_8HGYp6y18L7nnV</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Braunfelds, J.</creator><creator>Zvirbule, K.</creator><creator>Senkans, U.</creator><creator>Murnieks, R.</creator><creator>Lyashuk, I.</creator><creator>Porins, J.</creator><creator>Spolitis, S.</creator><creator>Bobrovs, V.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230801</creationdate><title>Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network</title><author>Braunfelds, J. ; Zvirbule, K. ; Senkans, U. ; Murnieks, R. ; Lyashuk, I. ; Porins, J. ; Spolitis, S. ; Bobrovs, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-219306c0c85cd46688ad89dbcff295cb3495d5a859e3abc088456650d197ba763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bragg gratings</topic><topic>Communications systems</topic><topic>Data transmission</topic><topic>Dense wavelength division multiplexed passive optical network (DWDM-PON)</topic><topic>Dense Wavelength Division Multiplexing</topic><topic>fibre Bragg grating (FBG) optical sensors</topic><topic>Four-wave mixing</topic><topic>four-wave mixing (FWM)</topic><topic>highly nonlinear optical fibre (HNLF)</topic><topic>Laser arrays</topic><topic>Light sources</topic><topic>non-return-to-zero on-off keying (NRZ-OOK)</topic><topic>On-Off Keying</topic><topic>Optical communication</topic><topic>Optical frequency</topic><topic>optical frequency combs (OFC)</topic><topic>Optical measuring instruments</topic><topic>Power management</topic><topic>Sensors</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braunfelds, J.</creatorcontrib><creatorcontrib>Zvirbule, K.</creatorcontrib><creatorcontrib>Senkans, U.</creatorcontrib><creatorcontrib>Murnieks, R.</creatorcontrib><creatorcontrib>Lyashuk, I.</creatorcontrib><creatorcontrib>Porins, J.</creatorcontrib><creatorcontrib>Spolitis, S.</creatorcontrib><creatorcontrib>Bobrovs, V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Latvian Journal of Physics and Technical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braunfelds, J.</au><au>Zvirbule, K.</au><au>Senkans, U.</au><au>Murnieks, R.</au><au>Lyashuk, I.</au><au>Porins, J.</au><au>Spolitis, S.</au><au>Bobrovs, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network</atitle><jtitle>Latvian Journal of Physics and Technical Sciences</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>60</volume><issue>4</issue><spage>61</spage><epage>76</epage><pages>61-76</pages><issn>2255-8896</issn><issn>0868-8257</issn><eissn>2255-8896</eissn><eissn>2199-6156</eissn><abstract>Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological opportunities for network development, and energy efficiency by substituting a power-demanding laser array. In this research, OFCs are generated for the purpose of combined network application of DWDM-PON and FBG optical sensors. The paper also investigates compatibility scenarios with OFCs in such systems. The mathematical simulation model has been developed and the performance of FWM-OFC based 8-channel 50 GHz spaced non-return-to-zero on-off keying (NRZ-OOK) modulated DWDM-PON transmission system, operating at 50 km single-mode fibre (SMF) with a bit rate of at least 10 Gbps embedded with 7 FBG optical temperature sensors, has been studied. As it is shown, FWM application results in OFC source that has fluctuations of the individual comb tones of less than 3 dB in power, and with an extinction ratio of about 33 dB for operation range of 192.9–193.25 THz, acting as a unified light source for all the data transmission channels. Embedded FBG optical sensors network causes negligible 0.3 dB power penalty.</abstract><cop>Riga</cop><pub>Sciendo</pub><doi>10.2478/lpts-2023-0025</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2255-8896
ispartof Latvian Journal of Physics and Technical Sciences, 2023-08, Vol.60 (4), p.61-76
issn 2255-8896
0868-8257
2255-8896
2199-6156
language eng
recordid cdi_proquest_journals_2847315570
source Walter De Gruyter: Open Access Journals; EZB Electronic Journals Library
subjects Bragg gratings
Communications systems
Data transmission
Dense wavelength division multiplexed passive optical network (DWDM-PON)
Dense Wavelength Division Multiplexing
fibre Bragg grating (FBG) optical sensors
Four-wave mixing
four-wave mixing (FWM)
highly nonlinear optical fibre (HNLF)
Laser arrays
Light sources
non-return-to-zero on-off keying (NRZ-OOK)
On-Off Keying
Optical communication
Optical frequency
optical frequency combs (OFC)
Optical measuring instruments
Power management
Sensors
Temperature sensors
title Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20FWM-Based%20OFC%20for%20DWDM%20Optical%20Communication%20System%20with%20Embedded%20FBG%20Sensor%20Network&rft.jtitle=Latvian%20Journal%20of%20Physics%20and%20Technical%20Sciences&rft.au=Braunfelds,%20J.&rft.date=2023-08-01&rft.volume=60&rft.issue=4&rft.spage=61&rft.epage=76&rft.pages=61-76&rft.issn=2255-8896&rft.eissn=2255-8896&rft_id=info:doi/10.2478/lpts-2023-0025&rft_dat=%3Cproquest_cross%3E2847315570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847315570&rft_id=info:pmid/&rfr_iscdi=true