Application of FWM-Based OFC for DWDM Optical Communication System with Embedded FBG Sensor Network

Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological oppo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Latvian Journal of Physics and Technical Sciences 2023-08, Vol.60 (4), p.61-76
Hauptverfasser: Braunfelds, J., Zvirbule, K., Senkans, U., Murnieks, R., Lyashuk, I., Porins, J., Spolitis, S., Bobrovs, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four-wave mixing optical frequency comb fibre-based setups (FWM-OFCs) have the potential to improve the combined dense wavelength division multiplexed passive optical network (DWDM-PON) and fibre Bragg grating (FBG) temperature sensors network providing easier application, broader technological opportunities for network development, and energy efficiency by substituting a power-demanding laser array. In this research, OFCs are generated for the purpose of combined network application of DWDM-PON and FBG optical sensors. The paper also investigates compatibility scenarios with OFCs in such systems. The mathematical simulation model has been developed and the performance of FWM-OFC based 8-channel 50 GHz spaced non-return-to-zero on-off keying (NRZ-OOK) modulated DWDM-PON transmission system, operating at 50 km single-mode fibre (SMF) with a bit rate of at least 10 Gbps embedded with 7 FBG optical temperature sensors, has been studied. As it is shown, FWM application results in OFC source that has fluctuations of the individual comb tones of less than 3 dB in power, and with an extinction ratio of about 33 dB for operation range of 192.9–193.25 THz, acting as a unified light source for all the data transmission channels. Embedded FBG optical sensors network causes negligible 0.3 dB power penalty.
ISSN:2255-8896
0868-8257
2255-8896
2199-6156
DOI:10.2478/lpts-2023-0025