Phase‐Coherent Optical Frequency Up‐Conversion with Millimeter‐Size Zn(3‐ptz)2 Metal‐Organic Framework Single Crystals
Metal‐organic frameworks (MOFs) have emerged as candidate materials for nonlinear optics due to their enhanced optical and chemical stability in comparison with conventional organic crystals. However, producing large single crystals that support perfect phase matching conditions for frequency conver...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2023-08, Vol.11 (15), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 11 |
creator | Hidalgo‐Rojas, Diego García‐Garfido, Juan Enríquez, Javier Rojas‐Aedo, Ricardo Wheatley, Robert Alastair Fritz, Rubén A. Singh, Dinesh P. Herrera, Felipe Seifert, Birger |
description | Metal‐organic frameworks (MOFs) have emerged as candidate materials for nonlinear optics due to their enhanced optical and chemical stability in comparison with conventional organic crystals. However, producing large single crystals that support perfect phase matching conditions for frequency conversion is a long‐standing challenge due to the highly metastable conditions in which MOF crystals tend to self‐assemble in solution. By modulating the synthesis and growth conditions, this limitation is overcome to produce millimeter–sized Zn(3‐ptz)2 uniaxial MOF single crystals. Optimized MOF crystals with large birefringence in the visible Δn ≈ −0.3 and high transparency allow for the observation of strong second‐harmonic (SHG) and third‐harmonic generation (THG) signals for the first time, using femtosecond near‐infrared pump pulses. For conditions of type‐I SHG phase‐matching, the measured effective nonlinear coefficient of Zn(3‐ptz)2 is deff ≈ 0.10 pm V−1, the largest measured nonlinearity for MOF materials to date. The experiments quantitatively agree with first‐principles simulations based on the crystal lattice structure. The damage threshold is estimated on the order of 0.2 TW cm−2 for raw single crystals, which can be further increased with additional crystal engineering steps. The demonstration of efficient frequency up‐conversion of light with long‐range phase coherence establishes MOF single crystals as promising materials for nonlinear optical devices.
Linear and nonlinear optical properties of millimeter‐sized noncentrosymmetric uniaxial Zn(3‐ptz)2 metal‐organic framework single crystals are experimentally investigated. Coherent frequency up‐conversion using intense femtosecond pump pulses in the near‐infrared enables the generation of intense second‐harmonic and third‐harmonic radiation for the first time. For type‐I SHG phase‐matching, the largest nonlinearity for these crystals to date is measured. |
doi_str_mv | 10.1002/adom.202300142 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847206143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847206143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-3baf0be7e099fb226f4c84e1489925a99f8677a4c771a9a8bb9ee91a49b9d2a53</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhiMEElXpymyJBYYU23HqeKwCBaRWQSpdWCInPWldcsNOqdKpj8Az8iS4FAEb07l9_zk6v-OcE9wnGNNrOa-KPsXUw5gweuR0KBG-SzAnx3_yU6dnzApbBnNPMN5xdo9LaeBj9x5WS9BQNiiqG5XKHI00vK6hTFs0q7_m5Rtoo6oSbVSzRBOV56qABrQdTtUW0HN56dm8brZXFE2gkbmtIr2QpUrtNlnAptIvaKrKRQ4o1K2xiDlzTjIboPcdu85sdPsU3rvj6O4hHI7d1PM5db1EZjgBDliILKF0kLE0YEBYIAT1pW0GA84lSzknUsggSQSAIJKJRMyp9L2uc3HYW-vK_mWaeFWtdWlPxjRgnOIBYZ6l-gcq1ZUxGrK41qqQuo0JjvdGx3uj4x-jrUAcBBuVQ_sPHQ9vosmv9hMugoe-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847206143</pqid></control><display><type>article</type><title>Phase‐Coherent Optical Frequency Up‐Conversion with Millimeter‐Size Zn(3‐ptz)2 Metal‐Organic Framework Single Crystals</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hidalgo‐Rojas, Diego ; García‐Garfido, Juan ; Enríquez, Javier ; Rojas‐Aedo, Ricardo ; Wheatley, Robert Alastair ; Fritz, Rubén A. ; Singh, Dinesh P. ; Herrera, Felipe ; Seifert, Birger</creator><creatorcontrib>Hidalgo‐Rojas, Diego ; García‐Garfido, Juan ; Enríquez, Javier ; Rojas‐Aedo, Ricardo ; Wheatley, Robert Alastair ; Fritz, Rubén A. ; Singh, Dinesh P. ; Herrera, Felipe ; Seifert, Birger</creatorcontrib><description>Metal‐organic frameworks (MOFs) have emerged as candidate materials for nonlinear optics due to their enhanced optical and chemical stability in comparison with conventional organic crystals. However, producing large single crystals that support perfect phase matching conditions for frequency conversion is a long‐standing challenge due to the highly metastable conditions in which MOF crystals tend to self‐assemble in solution. By modulating the synthesis and growth conditions, this limitation is overcome to produce millimeter–sized Zn(3‐ptz)2 uniaxial MOF single crystals. Optimized MOF crystals with large birefringence in the visible Δn ≈ −0.3 and high transparency allow for the observation of strong second‐harmonic (SHG) and third‐harmonic generation (THG) signals for the first time, using femtosecond near‐infrared pump pulses. For conditions of type‐I SHG phase‐matching, the measured effective nonlinear coefficient of Zn(3‐ptz)2 is deff ≈ 0.10 pm V−1, the largest measured nonlinearity for MOF materials to date. The experiments quantitatively agree with first‐principles simulations based on the crystal lattice structure. The damage threshold is estimated on the order of 0.2 TW cm−2 for raw single crystals, which can be further increased with additional crystal engineering steps. The demonstration of efficient frequency up‐conversion of light with long‐range phase coherence establishes MOF single crystals as promising materials for nonlinear optical devices.
Linear and nonlinear optical properties of millimeter‐sized noncentrosymmetric uniaxial Zn(3‐ptz)2 metal‐organic framework single crystals are experimentally investigated. Coherent frequency up‐conversion using intense femtosecond pump pulses in the near‐infrared enables the generation of intense second‐harmonic and third‐harmonic radiation for the first time. For type‐I SHG phase‐matching, the largest nonlinearity for these crystals to date is measured.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202300142</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Birefringence ; Conversion ; critical phase matching ; crystal growth ; Crystal lattices ; effective nonlinear coefficient ; Harmonic generations ; laser damage threshold ; Materials science ; Materials selection ; Metal-organic frameworks ; metal–organic framework crystals ; Nonlinear optics ; Nonlinearity ; Optical frequency ; Optics ; Organic crystals ; Phase coherence ; Phase matching ; second–harmonic generation ; Signal generation ; Single crystals ; third–harmonic generation ; Yield point</subject><ispartof>Advanced optical materials, 2023-08, Vol.11 (15), p.n/a</ispartof><rights>2023 The Authors. Advanced Optical Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-3baf0be7e099fb226f4c84e1489925a99f8677a4c771a9a8bb9ee91a49b9d2a53</citedby><cites>FETCH-LOGICAL-c3572-3baf0be7e099fb226f4c84e1489925a99f8677a4c771a9a8bb9ee91a49b9d2a53</cites><orcidid>0000-0003-4597-6149 ; 0000-0002-6691-4740 ; 0000-0002-2893-7749 ; 0000-0002-1954-0010 ; 0000-0002-2502-5787 ; 0000-0001-7186-287X ; 0000-0003-0477-8613 ; 0000-0001-8121-1931 ; 0000-0002-3371-323X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202300142$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202300142$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Hidalgo‐Rojas, Diego</creatorcontrib><creatorcontrib>García‐Garfido, Juan</creatorcontrib><creatorcontrib>Enríquez, Javier</creatorcontrib><creatorcontrib>Rojas‐Aedo, Ricardo</creatorcontrib><creatorcontrib>Wheatley, Robert Alastair</creatorcontrib><creatorcontrib>Fritz, Rubén A.</creatorcontrib><creatorcontrib>Singh, Dinesh P.</creatorcontrib><creatorcontrib>Herrera, Felipe</creatorcontrib><creatorcontrib>Seifert, Birger</creatorcontrib><title>Phase‐Coherent Optical Frequency Up‐Conversion with Millimeter‐Size Zn(3‐ptz)2 Metal‐Organic Framework Single Crystals</title><title>Advanced optical materials</title><description>Metal‐organic frameworks (MOFs) have emerged as candidate materials for nonlinear optics due to their enhanced optical and chemical stability in comparison with conventional organic crystals. However, producing large single crystals that support perfect phase matching conditions for frequency conversion is a long‐standing challenge due to the highly metastable conditions in which MOF crystals tend to self‐assemble in solution. By modulating the synthesis and growth conditions, this limitation is overcome to produce millimeter–sized Zn(3‐ptz)2 uniaxial MOF single crystals. Optimized MOF crystals with large birefringence in the visible Δn ≈ −0.3 and high transparency allow for the observation of strong second‐harmonic (SHG) and third‐harmonic generation (THG) signals for the first time, using femtosecond near‐infrared pump pulses. For conditions of type‐I SHG phase‐matching, the measured effective nonlinear coefficient of Zn(3‐ptz)2 is deff ≈ 0.10 pm V−1, the largest measured nonlinearity for MOF materials to date. The experiments quantitatively agree with first‐principles simulations based on the crystal lattice structure. The damage threshold is estimated on the order of 0.2 TW cm−2 for raw single crystals, which can be further increased with additional crystal engineering steps. The demonstration of efficient frequency up‐conversion of light with long‐range phase coherence establishes MOF single crystals as promising materials for nonlinear optical devices.
Linear and nonlinear optical properties of millimeter‐sized noncentrosymmetric uniaxial Zn(3‐ptz)2 metal‐organic framework single crystals are experimentally investigated. Coherent frequency up‐conversion using intense femtosecond pump pulses in the near‐infrared enables the generation of intense second‐harmonic and third‐harmonic radiation for the first time. For type‐I SHG phase‐matching, the largest nonlinearity for these crystals to date is measured.</description><subject>Birefringence</subject><subject>Conversion</subject><subject>critical phase matching</subject><subject>crystal growth</subject><subject>Crystal lattices</subject><subject>effective nonlinear coefficient</subject><subject>Harmonic generations</subject><subject>laser damage threshold</subject><subject>Materials science</subject><subject>Materials selection</subject><subject>Metal-organic frameworks</subject><subject>metal–organic framework crystals</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optical frequency</subject><subject>Optics</subject><subject>Organic crystals</subject><subject>Phase coherence</subject><subject>Phase matching</subject><subject>second–harmonic generation</subject><subject>Signal generation</subject><subject>Single crystals</subject><subject>third–harmonic generation</subject><subject>Yield point</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkLtOwzAUhiMEElXpymyJBYYU23HqeKwCBaRWQSpdWCInPWldcsNOqdKpj8Az8iS4FAEb07l9_zk6v-OcE9wnGNNrOa-KPsXUw5gweuR0KBG-SzAnx3_yU6dnzApbBnNPMN5xdo9LaeBj9x5WS9BQNiiqG5XKHI00vK6hTFs0q7_m5Rtoo6oSbVSzRBOV56qABrQdTtUW0HN56dm8brZXFE2gkbmtIr2QpUrtNlnAptIvaKrKRQ4o1K2xiDlzTjIboPcdu85sdPsU3rvj6O4hHI7d1PM5db1EZjgBDliILKF0kLE0YEBYIAT1pW0GA84lSzknUsggSQSAIJKJRMyp9L2uc3HYW-vK_mWaeFWtdWlPxjRgnOIBYZ6l-gcq1ZUxGrK41qqQuo0JjvdGx3uj4x-jrUAcBBuVQ_sPHQ9vosmv9hMugoe-</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Hidalgo‐Rojas, Diego</creator><creator>García‐Garfido, Juan</creator><creator>Enríquez, Javier</creator><creator>Rojas‐Aedo, Ricardo</creator><creator>Wheatley, Robert Alastair</creator><creator>Fritz, Rubén A.</creator><creator>Singh, Dinesh P.</creator><creator>Herrera, Felipe</creator><creator>Seifert, Birger</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4597-6149</orcidid><orcidid>https://orcid.org/0000-0002-6691-4740</orcidid><orcidid>https://orcid.org/0000-0002-2893-7749</orcidid><orcidid>https://orcid.org/0000-0002-1954-0010</orcidid><orcidid>https://orcid.org/0000-0002-2502-5787</orcidid><orcidid>https://orcid.org/0000-0001-7186-287X</orcidid><orcidid>https://orcid.org/0000-0003-0477-8613</orcidid><orcidid>https://orcid.org/0000-0001-8121-1931</orcidid><orcidid>https://orcid.org/0000-0002-3371-323X</orcidid></search><sort><creationdate>20230801</creationdate><title>Phase‐Coherent Optical Frequency Up‐Conversion with Millimeter‐Size Zn(3‐ptz)2 Metal‐Organic Framework Single Crystals</title><author>Hidalgo‐Rojas, Diego ; García‐Garfido, Juan ; Enríquez, Javier ; Rojas‐Aedo, Ricardo ; Wheatley, Robert Alastair ; Fritz, Rubén A. ; Singh, Dinesh P. ; Herrera, Felipe ; Seifert, Birger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-3baf0be7e099fb226f4c84e1489925a99f8677a4c771a9a8bb9ee91a49b9d2a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Birefringence</topic><topic>Conversion</topic><topic>critical phase matching</topic><topic>crystal growth</topic><topic>Crystal lattices</topic><topic>effective nonlinear coefficient</topic><topic>Harmonic generations</topic><topic>laser damage threshold</topic><topic>Materials science</topic><topic>Materials selection</topic><topic>Metal-organic frameworks</topic><topic>metal–organic framework crystals</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optical frequency</topic><topic>Optics</topic><topic>Organic crystals</topic><topic>Phase coherence</topic><topic>Phase matching</topic><topic>second–harmonic generation</topic><topic>Signal generation</topic><topic>Single crystals</topic><topic>third–harmonic generation</topic><topic>Yield point</topic><toplevel>online_resources</toplevel><creatorcontrib>Hidalgo‐Rojas, Diego</creatorcontrib><creatorcontrib>García‐Garfido, Juan</creatorcontrib><creatorcontrib>Enríquez, Javier</creatorcontrib><creatorcontrib>Rojas‐Aedo, Ricardo</creatorcontrib><creatorcontrib>Wheatley, Robert Alastair</creatorcontrib><creatorcontrib>Fritz, Rubén A.</creatorcontrib><creatorcontrib>Singh, Dinesh P.</creatorcontrib><creatorcontrib>Herrera, Felipe</creatorcontrib><creatorcontrib>Seifert, Birger</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hidalgo‐Rojas, Diego</au><au>García‐Garfido, Juan</au><au>Enríquez, Javier</au><au>Rojas‐Aedo, Ricardo</au><au>Wheatley, Robert Alastair</au><au>Fritz, Rubén A.</au><au>Singh, Dinesh P.</au><au>Herrera, Felipe</au><au>Seifert, Birger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase‐Coherent Optical Frequency Up‐Conversion with Millimeter‐Size Zn(3‐ptz)2 Metal‐Organic Framework Single Crystals</atitle><jtitle>Advanced optical materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>11</volume><issue>15</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Metal‐organic frameworks (MOFs) have emerged as candidate materials for nonlinear optics due to their enhanced optical and chemical stability in comparison with conventional organic crystals. However, producing large single crystals that support perfect phase matching conditions for frequency conversion is a long‐standing challenge due to the highly metastable conditions in which MOF crystals tend to self‐assemble in solution. By modulating the synthesis and growth conditions, this limitation is overcome to produce millimeter–sized Zn(3‐ptz)2 uniaxial MOF single crystals. Optimized MOF crystals with large birefringence in the visible Δn ≈ −0.3 and high transparency allow for the observation of strong second‐harmonic (SHG) and third‐harmonic generation (THG) signals for the first time, using femtosecond near‐infrared pump pulses. For conditions of type‐I SHG phase‐matching, the measured effective nonlinear coefficient of Zn(3‐ptz)2 is deff ≈ 0.10 pm V−1, the largest measured nonlinearity for MOF materials to date. The experiments quantitatively agree with first‐principles simulations based on the crystal lattice structure. The damage threshold is estimated on the order of 0.2 TW cm−2 for raw single crystals, which can be further increased with additional crystal engineering steps. The demonstration of efficient frequency up‐conversion of light with long‐range phase coherence establishes MOF single crystals as promising materials for nonlinear optical devices.
Linear and nonlinear optical properties of millimeter‐sized noncentrosymmetric uniaxial Zn(3‐ptz)2 metal‐organic framework single crystals are experimentally investigated. Coherent frequency up‐conversion using intense femtosecond pump pulses in the near‐infrared enables the generation of intense second‐harmonic and third‐harmonic radiation for the first time. For type‐I SHG phase‐matching, the largest nonlinearity for these crystals to date is measured.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202300142</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4597-6149</orcidid><orcidid>https://orcid.org/0000-0002-6691-4740</orcidid><orcidid>https://orcid.org/0000-0002-2893-7749</orcidid><orcidid>https://orcid.org/0000-0002-1954-0010</orcidid><orcidid>https://orcid.org/0000-0002-2502-5787</orcidid><orcidid>https://orcid.org/0000-0001-7186-287X</orcidid><orcidid>https://orcid.org/0000-0003-0477-8613</orcidid><orcidid>https://orcid.org/0000-0001-8121-1931</orcidid><orcidid>https://orcid.org/0000-0002-3371-323X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2023-08, Vol.11 (15), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_2847206143 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Birefringence Conversion critical phase matching crystal growth Crystal lattices effective nonlinear coefficient Harmonic generations laser damage threshold Materials science Materials selection Metal-organic frameworks metal–organic framework crystals Nonlinear optics Nonlinearity Optical frequency Optics Organic crystals Phase coherence Phase matching second–harmonic generation Signal generation Single crystals third–harmonic generation Yield point |
title | Phase‐Coherent Optical Frequency Up‐Conversion with Millimeter‐Size Zn(3‐ptz)2 Metal‐Organic Framework Single Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%E2%80%90Coherent%20Optical%20Frequency%20Up%E2%80%90Conversion%20with%20Millimeter%E2%80%90Size%20Zn(3%E2%80%90ptz)2%20Metal%E2%80%90Organic%20Framework%20Single%20Crystals&rft.jtitle=Advanced%20optical%20materials&rft.au=Hidalgo%E2%80%90Rojas,%20Diego&rft.date=2023-08-01&rft.volume=11&rft.issue=15&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202300142&rft_dat=%3Cproquest_cross%3E2847206143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847206143&rft_id=info:pmid/&rfr_iscdi=true |