Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces

We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Healey, Timothy J, Nair, Gokul G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Healey, Timothy J
Nair, Gokul G
description We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2847151154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847151154</sourcerecordid><originalsourceid>FETCH-proquest_journals_28471511543</originalsourceid><addsrcrecordid>eNqNisEKgkAQQJcgSKp_GOgc6KoVXcXoYgR1LjYbZUJna0YP9vV16AM6PR7vjUxg4zhabhJrJ2au-gjD0K7WNk3jwFwOnhtidNIMkDdOOyqhcE_dQs4o9QAFMbX0Jq4h81xR3YvryLOCr6DA9iaO8SsMR0EthW54h1MvlStRZ2ZcuUZx_uPULHb5Odsvn-JfPWp3ffhe-JuudpOsozSK0iT-7_oAemBEZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847151154</pqid></control><display><type>article</type><title>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</title><source>Free E- Journals</source><creator>Healey, Timothy J ; Nair, Gokul G</creator><creatorcontrib>Healey, Timothy J ; Nair, Gokul G</creatorcontrib><description>We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Dirichlet problem ; Elastic deformation ; Equilibrium equations ; Membranes</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Healey, Timothy J</creatorcontrib><creatorcontrib>Nair, Gokul G</creatorcontrib><title>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</title><title>arXiv.org</title><description>We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.</description><subject>Configurations</subject><subject>Dirichlet problem</subject><subject>Elastic deformation</subject><subject>Equilibrium equations</subject><subject>Membranes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAQQJcgSKp_GOgc6KoVXcXoYgR1LjYbZUJna0YP9vV16AM6PR7vjUxg4zhabhJrJ2au-gjD0K7WNk3jwFwOnhtidNIMkDdOOyqhcE_dQs4o9QAFMbX0Jq4h81xR3YvryLOCr6DA9iaO8SsMR0EthW54h1MvlStRZ2ZcuUZx_uPULHb5Odsvn-JfPWp3ffhe-JuudpOsozSK0iT-7_oAemBEZQ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Healey, Timothy J</creator><creator>Nair, Gokul G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240530</creationdate><title>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</title><author>Healey, Timothy J ; Nair, Gokul G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28471511543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configurations</topic><topic>Dirichlet problem</topic><topic>Elastic deformation</topic><topic>Equilibrium equations</topic><topic>Membranes</topic><toplevel>online_resources</toplevel><creatorcontrib>Healey, Timothy J</creatorcontrib><creatorcontrib>Nair, Gokul G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Healey, Timothy J</au><au>Nair, Gokul G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</atitle><jtitle>arXiv.org</jtitle><date>2024-05-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2847151154
source Free E- Journals
subjects Configurations
Dirichlet problem
Elastic deformation
Equilibrium equations
Membranes
title Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonlinearly%20Elastic%20Maps:%20Energy%20Minimizing%20Configurations%20of%20Membranes%20on%20Prescribed%20Surfaces&rft.jtitle=arXiv.org&rft.au=Healey,%20Timothy%20J&rft.date=2024-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2847151154%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847151154&rft_id=info:pmid/&rfr_iscdi=true