Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces
We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density functio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Healey, Timothy J Nair, Gokul G |
description | We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2847151154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847151154</sourcerecordid><originalsourceid>FETCH-proquest_journals_28471511543</originalsourceid><addsrcrecordid>eNqNisEKgkAQQJcgSKp_GOgc6KoVXcXoYgR1LjYbZUJna0YP9vV16AM6PR7vjUxg4zhabhJrJ2au-gjD0K7WNk3jwFwOnhtidNIMkDdOOyqhcE_dQs4o9QAFMbX0Jq4h81xR3YvryLOCr6DA9iaO8SsMR0EthW54h1MvlStRZ2ZcuUZx_uPULHb5Odsvn-JfPWp3ffhe-JuudpOsozSK0iT-7_oAemBEZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847151154</pqid></control><display><type>article</type><title>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</title><source>Free E- Journals</source><creator>Healey, Timothy J ; Nair, Gokul G</creator><creatorcontrib>Healey, Timothy J ; Nair, Gokul G</creatorcontrib><description>We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Dirichlet problem ; Elastic deformation ; Equilibrium equations ; Membranes</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Healey, Timothy J</creatorcontrib><creatorcontrib>Nair, Gokul G</creatorcontrib><title>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</title><title>arXiv.org</title><description>We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.</description><subject>Configurations</subject><subject>Dirichlet problem</subject><subject>Elastic deformation</subject><subject>Equilibrium equations</subject><subject>Membranes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNisEKgkAQQJcgSKp_GOgc6KoVXcXoYgR1LjYbZUJna0YP9vV16AM6PR7vjUxg4zhabhJrJ2au-gjD0K7WNk3jwFwOnhtidNIMkDdOOyqhcE_dQs4o9QAFMbX0Jq4h81xR3YvryLOCr6DA9iaO8SsMR0EthW54h1MvlStRZ2ZcuUZx_uPULHb5Odsvn-JfPWp3ffhe-JuudpOsozSK0iT-7_oAemBEZQ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Healey, Timothy J</creator><creator>Nair, Gokul G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240530</creationdate><title>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</title><author>Healey, Timothy J ; Nair, Gokul G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28471511543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Configurations</topic><topic>Dirichlet problem</topic><topic>Elastic deformation</topic><topic>Equilibrium equations</topic><topic>Membranes</topic><toplevel>online_resources</toplevel><creatorcontrib>Healey, Timothy J</creatorcontrib><creatorcontrib>Nair, Gokul G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Healey, Timothy J</au><au>Nair, Gokul G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces</atitle><jtitle>arXiv.org</jtitle><date>2024-05-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We propose a model for nonlinearly elastic membranes undergoing finite deformations while confined to a regular frictionless surface in \(\mathbb{R}^3\). This is a physically correct model of the analogy sometimes given to motivate harmonic maps between manifolds. The proposed energy density function is convex in the strain pair comprising the deformation gradient and the local area ratio. If the target surface is a plane, the problem reduces to 2-dimensional, polyconvex nonlinear elasticity addressed by J.M. Ball. On the other hand, the energy density is not rank-one convex for unconstrained deformations into \(\mathbb{R}^3\). We show that the problem admits an energy-minimizing configuration when constrained to lie on the given surface. For a class of Dirichlet problems, we demonstrate that the minimizing deformation is a homeomorphism onto its image on the given surface and establish the weak Eulerian form of the equilibrium equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2847151154 |
source | Free E- Journals |
subjects | Configurations Dirichlet problem Elastic deformation Equilibrium equations Membranes |
title | Nonlinearly Elastic Maps: Energy Minimizing Configurations of Membranes on Prescribed Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonlinearly%20Elastic%20Maps:%20Energy%20Minimizing%20Configurations%20of%20Membranes%20on%20Prescribed%20Surfaces&rft.jtitle=arXiv.org&rft.au=Healey,%20Timothy%20J&rft.date=2024-05-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2847151154%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847151154&rft_id=info:pmid/&rfr_iscdi=true |