Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-κB downregulation
Malignant melanoma is a highly metastatic tumour, resistant to treatment. Serotonin type-3 (5-HT 3 ) receptor antagonists, such as tropisetron and ondansetron, are well-tolerated antiemetic drugs commonly used to prevent nausea caused by chemotherapy or radiotherapy. We investigated the anticancer e...
Gespeichert in:
Veröffentlicht in: | Cell biology and toxicology 2023-06, Vol.39 (3), p.1119-1135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1135 |
---|---|
container_issue | 3 |
container_start_page | 1119 |
container_title | Cell biology and toxicology |
container_volume | 39 |
creator | Barzegar-fallah, Anita Alimoradi, Houman Dunlop, Jessica L. Torbati, Elham Baird, Sarah K. |
description | Malignant melanoma is a highly metastatic tumour, resistant to treatment. Serotonin type-3 (5-HT
3
) receptor antagonists, such as tropisetron and ondansetron, are well-tolerated antiemetic drugs commonly used to prevent nausea caused by chemotherapy or radiotherapy. We investigated the anticancer effects of these drugs on melanoma cancer cell lines WM-266–4 and B16F10 with or without paclitaxel. We constructed IC
50
curves and performed Chou–Talalay analysis, using data obtained with the MTT assay. Flow cytometry and fluorescent microscopy were used to examine characteristics of the cell cycle, cell death and cytoskeleton changes. Protein levels and activation were analysed by western blotting and molecular docking studies carried out. Data were analysed by one way ANOVA and post hoc testing. Ondansetron and tropisetron showed selective concentration-dependent cytotoxicity in melanoma cell lines WM-266–4 and B16F10. The effect in combination with paclitaxel was synergistic. The drugs did not cause cell cycle arrest but did promote characteristics of classical apoptosis, including accumulation of subG1 DNA, cleaved caspase-3, mitochondrial membrane permeability and phosphatidylserine exposure. As well, the cytosolic calcium level in the melanoma cells was enhanced, phosphorylated ERK1/2 induced and NF-
κ
B inhibited. Finally, the formation of microtubules was shown to be impaired in melanoma cells treated with ondansetron or tropisetron. Docking studies were used to predict that these drugs could bind to the colchicine binding site on the tubulin molecule. Antiemetic drugs, already given in combination with chemotherapy, may enhance the cytotoxic effect of chemotherapy, following successful delivery to the tumour site. |
doi_str_mv | 10.1007/s10565-021-09667-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2847145572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847145572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-986dd9e69f73cd5f54f86325061b0f1874f5b3fbe3538430b072635d89c3aae03</originalsourceid><addsrcrecordid>eNp9kU1uFDEQhS0EIkPgAiyQJbYx-Kdtdy8hSgARgcTP2nK7qycO7nZju0FzJY7AITgTnswAO1al0nv1PZUeQo8ZfcYo1c8zo1JJQjkjtFNKE3oHbZjUgqiW87toQ3XDCacdO0EPcr6hlCqm5X10Iholm65jG_TjI6RY4uxnXHYLEIETOFhKTNjOxW6rkkvGGQK44r9B2OEvPgQ8QbBznCx2EELG5TrFdXuNXbA5e2cDtkuslOzzGZ68qxlrvwbAAywx7CZIPtvi43yGLz68xXbPPu52HvC7S_Lr50s8xO9zgu0abqWH6N5oQ4ZHx3mKPl9efDp_Ta7ev3pz_uKKOKFlIV2rhqED1Y1auEGOshlbJbisv_d0ZK1uRtmLsQchRdsI2lPNlZBD2zlhLVBxip4euEuKX1fIxdzENc010vC20ayRUvPq4gdX_S3nBKNZkp9s2hlGzb4ec6jH1HrMbT1mj35yRK_9BMPfkz99VIM4GHKV5i2kf9n_wf4GFpuffA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847145572</pqid></control><display><type>article</type><title>Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-κB downregulation</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Barzegar-fallah, Anita ; Alimoradi, Houman ; Dunlop, Jessica L. ; Torbati, Elham ; Baird, Sarah K.</creator><creatorcontrib>Barzegar-fallah, Anita ; Alimoradi, Houman ; Dunlop, Jessica L. ; Torbati, Elham ; Baird, Sarah K.</creatorcontrib><description>Malignant melanoma is a highly metastatic tumour, resistant to treatment. Serotonin type-3 (5-HT
3
) receptor antagonists, such as tropisetron and ondansetron, are well-tolerated antiemetic drugs commonly used to prevent nausea caused by chemotherapy or radiotherapy. We investigated the anticancer effects of these drugs on melanoma cancer cell lines WM-266–4 and B16F10 with or without paclitaxel. We constructed IC
50
curves and performed Chou–Talalay analysis, using data obtained with the MTT assay. Flow cytometry and fluorescent microscopy were used to examine characteristics of the cell cycle, cell death and cytoskeleton changes. Protein levels and activation were analysed by western blotting and molecular docking studies carried out. Data were analysed by one way ANOVA and post hoc testing. Ondansetron and tropisetron showed selective concentration-dependent cytotoxicity in melanoma cell lines WM-266–4 and B16F10. The effect in combination with paclitaxel was synergistic. The drugs did not cause cell cycle arrest but did promote characteristics of classical apoptosis, including accumulation of subG1 DNA, cleaved caspase-3, mitochondrial membrane permeability and phosphatidylserine exposure. As well, the cytosolic calcium level in the melanoma cells was enhanced, phosphorylated ERK1/2 induced and NF-
κ
B inhibited. Finally, the formation of microtubules was shown to be impaired in melanoma cells treated with ondansetron or tropisetron. Docking studies were used to predict that these drugs could bind to the colchicine binding site on the tubulin molecule. Antiemetic drugs, already given in combination with chemotherapy, may enhance the cytotoxic effect of chemotherapy, following successful delivery to the tumour site.</description><identifier>ISSN: 0742-2091</identifier><identifier>EISSN: 1573-6822</identifier><identifier>DOI: 10.1007/s10565-021-09667-0</identifier><identifier>PMID: 34654991</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anticancer properties ; Antiemetics ; Antiemetics - adverse effects ; Apoptosis ; Binding sites ; Biochemistry ; Biomedical and Life Sciences ; Calcium permeability ; Caspase-3 ; Cell Biology ; Cell cycle ; Cell death ; Chemotherapy ; Colchicine ; Cytoskeleton ; Cytotoxicity ; Data analysis ; Depolymerization ; Down-Regulation ; Drugs ; Extracellular signal-regulated kinase ; Flow cytometry ; Fluorescence ; Humans ; Life Sciences ; Melanoma ; Melanoma - drug therapy ; Membrane permeability ; Metastases ; Microtubules ; Mitochondrial DNA ; Molecular docking ; Molecular Docking Simulation ; NF-kappa B ; NF-κB protein ; Ondansetron - adverse effects ; Original Article ; Paclitaxel ; Paclitaxel - pharmacology ; Pharmacology/Toxicology ; Phosphatidylserine ; Radiation therapy ; Receptors ; Serotonin ; Serotonin - adverse effects ; Serotonin S3 receptors ; Skin cancer ; Treatment resistance ; Tropisetron - adverse effects ; Tumor cell lines ; Tumors ; Variance analysis ; Vomiting - chemically induced ; Vomiting - drug therapy ; Vomiting - prevention & control ; Western blotting</subject><ispartof>Cell biology and toxicology, 2023-06, Vol.39 (3), p.1119-1135</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-986dd9e69f73cd5f54f86325061b0f1874f5b3fbe3538430b072635d89c3aae03</citedby><cites>FETCH-LOGICAL-c375t-986dd9e69f73cd5f54f86325061b0f1874f5b3fbe3538430b072635d89c3aae03</cites><orcidid>0000-0001-6741-5866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10565-021-09667-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10565-021-09667-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34654991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barzegar-fallah, Anita</creatorcontrib><creatorcontrib>Alimoradi, Houman</creatorcontrib><creatorcontrib>Dunlop, Jessica L.</creatorcontrib><creatorcontrib>Torbati, Elham</creatorcontrib><creatorcontrib>Baird, Sarah K.</creatorcontrib><title>Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-κB downregulation</title><title>Cell biology and toxicology</title><addtitle>Cell Biol Toxicol</addtitle><addtitle>Cell Biol Toxicol</addtitle><description>Malignant melanoma is a highly metastatic tumour, resistant to treatment. Serotonin type-3 (5-HT
3
) receptor antagonists, such as tropisetron and ondansetron, are well-tolerated antiemetic drugs commonly used to prevent nausea caused by chemotherapy or radiotherapy. We investigated the anticancer effects of these drugs on melanoma cancer cell lines WM-266–4 and B16F10 with or without paclitaxel. We constructed IC
50
curves and performed Chou–Talalay analysis, using data obtained with the MTT assay. Flow cytometry and fluorescent microscopy were used to examine characteristics of the cell cycle, cell death and cytoskeleton changes. Protein levels and activation were analysed by western blotting and molecular docking studies carried out. Data were analysed by one way ANOVA and post hoc testing. Ondansetron and tropisetron showed selective concentration-dependent cytotoxicity in melanoma cell lines WM-266–4 and B16F10. The effect in combination with paclitaxel was synergistic. The drugs did not cause cell cycle arrest but did promote characteristics of classical apoptosis, including accumulation of subG1 DNA, cleaved caspase-3, mitochondrial membrane permeability and phosphatidylserine exposure. As well, the cytosolic calcium level in the melanoma cells was enhanced, phosphorylated ERK1/2 induced and NF-
κ
B inhibited. Finally, the formation of microtubules was shown to be impaired in melanoma cells treated with ondansetron or tropisetron. Docking studies were used to predict that these drugs could bind to the colchicine binding site on the tubulin molecule. Antiemetic drugs, already given in combination with chemotherapy, may enhance the cytotoxic effect of chemotherapy, following successful delivery to the tumour site.</description><subject>Anticancer properties</subject><subject>Antiemetics</subject><subject>Antiemetics - adverse effects</subject><subject>Apoptosis</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calcium permeability</subject><subject>Caspase-3</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>Colchicine</subject><subject>Cytoskeleton</subject><subject>Cytotoxicity</subject><subject>Data analysis</subject><subject>Depolymerization</subject><subject>Down-Regulation</subject><subject>Drugs</subject><subject>Extracellular signal-regulated kinase</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Melanoma</subject><subject>Melanoma - drug therapy</subject><subject>Membrane permeability</subject><subject>Metastases</subject><subject>Microtubules</subject><subject>Mitochondrial DNA</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>NF-kappa B</subject><subject>NF-κB protein</subject><subject>Ondansetron - adverse effects</subject><subject>Original Article</subject><subject>Paclitaxel</subject><subject>Paclitaxel - pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Phosphatidylserine</subject><subject>Radiation therapy</subject><subject>Receptors</subject><subject>Serotonin</subject><subject>Serotonin - adverse effects</subject><subject>Serotonin S3 receptors</subject><subject>Skin cancer</subject><subject>Treatment resistance</subject><subject>Tropisetron - adverse effects</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><subject>Variance analysis</subject><subject>Vomiting - chemically induced</subject><subject>Vomiting - drug therapy</subject><subject>Vomiting - prevention & control</subject><subject>Western blotting</subject><issn>0742-2091</issn><issn>1573-6822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1uFDEQhS0EIkPgAiyQJbYx-Kdtdy8hSgARgcTP2nK7qycO7nZju0FzJY7AITgTnswAO1al0nv1PZUeQo8ZfcYo1c8zo1JJQjkjtFNKE3oHbZjUgqiW87toQ3XDCacdO0EPcr6hlCqm5X10Iholm65jG_TjI6RY4uxnXHYLEIETOFhKTNjOxW6rkkvGGQK44r9B2OEvPgQ8QbBznCx2EELG5TrFdXuNXbA5e2cDtkuslOzzGZ68qxlrvwbAAywx7CZIPtvi43yGLz68xXbPPu52HvC7S_Lr50s8xO9zgu0abqWH6N5oQ4ZHx3mKPl9efDp_Ta7ev3pz_uKKOKFlIV2rhqED1Y1auEGOshlbJbisv_d0ZK1uRtmLsQchRdsI2lPNlZBD2zlhLVBxip4euEuKX1fIxdzENc010vC20ayRUvPq4gdX_S3nBKNZkp9s2hlGzb4ec6jH1HrMbT1mj35yRK_9BMPfkz99VIM4GHKV5i2kf9n_wf4GFpuffA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Barzegar-fallah, Anita</creator><creator>Alimoradi, Houman</creator><creator>Dunlop, Jessica L.</creator><creator>Torbati, Elham</creator><creator>Baird, Sarah K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6741-5866</orcidid></search><sort><creationdate>20230601</creationdate><title>Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-κB downregulation</title><author>Barzegar-fallah, Anita ; Alimoradi, Houman ; Dunlop, Jessica L. ; Torbati, Elham ; Baird, Sarah K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-986dd9e69f73cd5f54f86325061b0f1874f5b3fbe3538430b072635d89c3aae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anticancer properties</topic><topic>Antiemetics</topic><topic>Antiemetics - adverse effects</topic><topic>Apoptosis</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calcium permeability</topic><topic>Caspase-3</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>Colchicine</topic><topic>Cytoskeleton</topic><topic>Cytotoxicity</topic><topic>Data analysis</topic><topic>Depolymerization</topic><topic>Down-Regulation</topic><topic>Drugs</topic><topic>Extracellular signal-regulated kinase</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Melanoma</topic><topic>Melanoma - drug therapy</topic><topic>Membrane permeability</topic><topic>Metastases</topic><topic>Microtubules</topic><topic>Mitochondrial DNA</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>NF-kappa B</topic><topic>NF-κB protein</topic><topic>Ondansetron - adverse effects</topic><topic>Original Article</topic><topic>Paclitaxel</topic><topic>Paclitaxel - pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Phosphatidylserine</topic><topic>Radiation therapy</topic><topic>Receptors</topic><topic>Serotonin</topic><topic>Serotonin - adverse effects</topic><topic>Serotonin S3 receptors</topic><topic>Skin cancer</topic><topic>Treatment resistance</topic><topic>Tropisetron - adverse effects</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><topic>Variance analysis</topic><topic>Vomiting - chemically induced</topic><topic>Vomiting - drug therapy</topic><topic>Vomiting - prevention & control</topic><topic>Western blotting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barzegar-fallah, Anita</creatorcontrib><creatorcontrib>Alimoradi, Houman</creatorcontrib><creatorcontrib>Dunlop, Jessica L.</creatorcontrib><creatorcontrib>Torbati, Elham</creatorcontrib><creatorcontrib>Baird, Sarah K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Cell biology and toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barzegar-fallah, Anita</au><au>Alimoradi, Houman</au><au>Dunlop, Jessica L.</au><au>Torbati, Elham</au><au>Baird, Sarah K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-κB downregulation</atitle><jtitle>Cell biology and toxicology</jtitle><stitle>Cell Biol Toxicol</stitle><addtitle>Cell Biol Toxicol</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>1119</spage><epage>1135</epage><pages>1119-1135</pages><issn>0742-2091</issn><eissn>1573-6822</eissn><abstract>Malignant melanoma is a highly metastatic tumour, resistant to treatment. Serotonin type-3 (5-HT
3
) receptor antagonists, such as tropisetron and ondansetron, are well-tolerated antiemetic drugs commonly used to prevent nausea caused by chemotherapy or radiotherapy. We investigated the anticancer effects of these drugs on melanoma cancer cell lines WM-266–4 and B16F10 with or without paclitaxel. We constructed IC
50
curves and performed Chou–Talalay analysis, using data obtained with the MTT assay. Flow cytometry and fluorescent microscopy were used to examine characteristics of the cell cycle, cell death and cytoskeleton changes. Protein levels and activation were analysed by western blotting and molecular docking studies carried out. Data were analysed by one way ANOVA and post hoc testing. Ondansetron and tropisetron showed selective concentration-dependent cytotoxicity in melanoma cell lines WM-266–4 and B16F10. The effect in combination with paclitaxel was synergistic. The drugs did not cause cell cycle arrest but did promote characteristics of classical apoptosis, including accumulation of subG1 DNA, cleaved caspase-3, mitochondrial membrane permeability and phosphatidylserine exposure. As well, the cytosolic calcium level in the melanoma cells was enhanced, phosphorylated ERK1/2 induced and NF-
κ
B inhibited. Finally, the formation of microtubules was shown to be impaired in melanoma cells treated with ondansetron or tropisetron. Docking studies were used to predict that these drugs could bind to the colchicine binding site on the tubulin molecule. Antiemetic drugs, already given in combination with chemotherapy, may enhance the cytotoxic effect of chemotherapy, following successful delivery to the tumour site.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34654991</pmid><doi>10.1007/s10565-021-09667-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6741-5866</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0742-2091 |
ispartof | Cell biology and toxicology, 2023-06, Vol.39 (3), p.1119-1135 |
issn | 0742-2091 1573-6822 |
language | eng |
recordid | cdi_proquest_journals_2847145572 |
source | MEDLINE; SpringerNature Journals |
subjects | Anticancer properties Antiemetics Antiemetics - adverse effects Apoptosis Binding sites Biochemistry Biomedical and Life Sciences Calcium permeability Caspase-3 Cell Biology Cell cycle Cell death Chemotherapy Colchicine Cytoskeleton Cytotoxicity Data analysis Depolymerization Down-Regulation Drugs Extracellular signal-regulated kinase Flow cytometry Fluorescence Humans Life Sciences Melanoma Melanoma - drug therapy Membrane permeability Metastases Microtubules Mitochondrial DNA Molecular docking Molecular Docking Simulation NF-kappa B NF-κB protein Ondansetron - adverse effects Original Article Paclitaxel Paclitaxel - pharmacology Pharmacology/Toxicology Phosphatidylserine Radiation therapy Receptors Serotonin Serotonin - adverse effects Serotonin S3 receptors Skin cancer Treatment resistance Tropisetron - adverse effects Tumor cell lines Tumors Variance analysis Vomiting - chemically induced Vomiting - drug therapy Vomiting - prevention & control Western blotting |
title | Serotonin type-3 receptor antagonists selectively kill melanoma cells through classical apoptosis, microtubule depolymerisation, ERK activation, and NF-κB downregulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serotonin%20type-3%20receptor%20antagonists%20selectively%20kill%20melanoma%20cells%20through%20classical%20apoptosis,%20microtubule%20depolymerisation,%20ERK%20activation,%20and%20NF-%CE%BAB%20downregulation&rft.jtitle=Cell%20biology%20and%20toxicology&rft.au=Barzegar-fallah,%20Anita&rft.date=2023-06-01&rft.volume=39&rft.issue=3&rft.spage=1119&rft.epage=1135&rft.pages=1119-1135&rft.issn=0742-2091&rft.eissn=1573-6822&rft_id=info:doi/10.1007/s10565-021-09667-0&rft_dat=%3Cproquest_cross%3E2847145572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847145572&rft_id=info:pmid/34654991&rfr_iscdi=true |