Workload analysis of a two-queue fluid polling model

In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2023-09, Vol.60 (3), p.1003-1030
Hauptverfasser: Kapodistria, Stella, Saxena, Mayank, Boxma, Onno J., Kella, Offer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue 3
container_start_page 1003
container_title Journal of applied probability
container_volume 60
creator Kapodistria, Stella
Saxena, Mayank
Boxma, Onno J.
Kella, Offer
description In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant speeds. The server spends an exponentially distributed amount of time in each queue. After the completion of such a visit time to one queue, the server instantly switches to the other queue, i.e., there is no switch-over time. For this model, we first derive the Laplace–Stieltjes transform (LST) of the stationary marginal fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST of the two-dimensional workload distribution that leads to a Riemann–Hilbert boundary value problem (BVP). After taking a heavy-traffic limit, and restricting ourselves to the symmetric case, the BVP simplifies and can be solved explicitly. In the second part of the paper, allowing for more general (Lévy) input processes and server switching policies, we investigate the transient process limit of the joint workload in heavy traffic. Again solving a BVP, we determine the stationary distribution of the limiting process. We show that, in the symmetric case, this distribution coincides with our earlier solution of the BVP, implying that in this case the two limits (stationarity and heavy traffic) commute.
doi_str_mv 10.1017/jpr.2022.108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846885354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2022_108</cupid><sourcerecordid>2846885354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-d566eb4790c4e9231b76b7f232737a0d57dec88706d0c6d22cb2677278b1ae003</originalsourceid><addsrcrecordid>eNptkEFLAzEUhIMoWKs3f0DAq1tfskle9ihFq1DwongM2U22bN02a9JF-u9NacGLl_cY-GYYhpBbBjMGDB_WQ5xx4DwrfUYmTKAsFCA_JxMAzooq30tyldIagAlZ4YSIzxC_-mAdtVvb71OXaGippbufUHyPfvS07cfO0SH0fbdd0U1wvr8mF63tk785_Sn5eH56n78Uy7fF6_xxWTRcVrvCSaV8LbCCRviKl6xGVWPLS44lWnASnW-0RlAOGuU4b2quEDnqmlkPUE7J3TF3iCGXSTuzDmPMPZPhWiitZSlFpu6PVBNDStG3Zojdxsa9YWAOu5i8iznskpXO-OyE200dO7fyf6n_Gn4BC0djSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846885354</pqid></control><display><type>article</type><title>Workload analysis of a two-queue fluid polling model</title><source>Cambridge Journals Online</source><creator>Kapodistria, Stella ; Saxena, Mayank ; Boxma, Onno J. ; Kella, Offer</creator><creatorcontrib>Kapodistria, Stella ; Saxena, Mayank ; Boxma, Onno J. ; Kella, Offer</creatorcontrib><description>In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant speeds. The server spends an exponentially distributed amount of time in each queue. After the completion of such a visit time to one queue, the server instantly switches to the other queue, i.e., there is no switch-over time. For this model, we first derive the Laplace–Stieltjes transform (LST) of the stationary marginal fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST of the two-dimensional workload distribution that leads to a Riemann–Hilbert boundary value problem (BVP). After taking a heavy-traffic limit, and restricting ourselves to the symmetric case, the BVP simplifies and can be solved explicitly. In the second part of the paper, allowing for more general (Lévy) input processes and server switching policies, we investigate the transient process limit of the joint workload in heavy traffic. Again solving a BVP, we determine the stationary distribution of the limiting process. We show that, in the symmetric case, this distribution coincides with our earlier solution of the BVP, implying that in this case the two limits (stationarity and heavy traffic) commute.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2022.108</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Boundary value problems ; Functional equations ; Mathematical analysis ; Original Article ; Polling schemes ; Queues ; Switches ; Traffic ; Workload ; Workloads</subject><ispartof>Journal of applied probability, 2023-09, Vol.60 (3), p.1003-1030</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c259t-d566eb4790c4e9231b76b7f232737a0d57dec88706d0c6d22cb2677278b1ae003</cites><orcidid>0000-0002-6433-5470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900222001085/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Kapodistria, Stella</creatorcontrib><creatorcontrib>Saxena, Mayank</creatorcontrib><creatorcontrib>Boxma, Onno J.</creatorcontrib><creatorcontrib>Kella, Offer</creatorcontrib><title>Workload analysis of a two-queue fluid polling model</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant speeds. The server spends an exponentially distributed amount of time in each queue. After the completion of such a visit time to one queue, the server instantly switches to the other queue, i.e., there is no switch-over time. For this model, we first derive the Laplace–Stieltjes transform (LST) of the stationary marginal fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST of the two-dimensional workload distribution that leads to a Riemann–Hilbert boundary value problem (BVP). After taking a heavy-traffic limit, and restricting ourselves to the symmetric case, the BVP simplifies and can be solved explicitly. In the second part of the paper, allowing for more general (Lévy) input processes and server switching policies, we investigate the transient process limit of the joint workload in heavy traffic. Again solving a BVP, we determine the stationary distribution of the limiting process. We show that, in the symmetric case, this distribution coincides with our earlier solution of the BVP, implying that in this case the two limits (stationarity and heavy traffic) commute.</description><subject>Approximation</subject><subject>Boundary value problems</subject><subject>Functional equations</subject><subject>Mathematical analysis</subject><subject>Original Article</subject><subject>Polling schemes</subject><subject>Queues</subject><subject>Switches</subject><subject>Traffic</subject><subject>Workload</subject><subject>Workloads</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFLAzEUhIMoWKs3f0DAq1tfskle9ihFq1DwongM2U22bN02a9JF-u9NacGLl_cY-GYYhpBbBjMGDB_WQ5xx4DwrfUYmTKAsFCA_JxMAzooq30tyldIagAlZ4YSIzxC_-mAdtVvb71OXaGippbufUHyPfvS07cfO0SH0fbdd0U1wvr8mF63tk785_Sn5eH56n78Uy7fF6_xxWTRcVrvCSaV8LbCCRviKl6xGVWPLS44lWnASnW-0RlAOGuU4b2quEDnqmlkPUE7J3TF3iCGXSTuzDmPMPZPhWiitZSlFpu6PVBNDStG3Zojdxsa9YWAOu5i8iznskpXO-OyE200dO7fyf6n_Gn4BC0djSA</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Kapodistria, Stella</creator><creator>Saxena, Mayank</creator><creator>Boxma, Onno J.</creator><creator>Kella, Offer</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6433-5470</orcidid></search><sort><creationdate>202309</creationdate><title>Workload analysis of a two-queue fluid polling model</title><author>Kapodistria, Stella ; Saxena, Mayank ; Boxma, Onno J. ; Kella, Offer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-d566eb4790c4e9231b76b7f232737a0d57dec88706d0c6d22cb2677278b1ae003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Boundary value problems</topic><topic>Functional equations</topic><topic>Mathematical analysis</topic><topic>Original Article</topic><topic>Polling schemes</topic><topic>Queues</topic><topic>Switches</topic><topic>Traffic</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapodistria, Stella</creatorcontrib><creatorcontrib>Saxena, Mayank</creatorcontrib><creatorcontrib>Boxma, Onno J.</creatorcontrib><creatorcontrib>Kella, Offer</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapodistria, Stella</au><au>Saxena, Mayank</au><au>Boxma, Onno J.</au><au>Kella, Offer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Workload analysis of a two-queue fluid polling model</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2023-09</date><risdate>2023</risdate><volume>60</volume><issue>3</issue><spage>1003</spage><epage>1030</epage><pages>1003-1030</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant speeds. The server spends an exponentially distributed amount of time in each queue. After the completion of such a visit time to one queue, the server instantly switches to the other queue, i.e., there is no switch-over time. For this model, we first derive the Laplace–Stieltjes transform (LST) of the stationary marginal fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST of the two-dimensional workload distribution that leads to a Riemann–Hilbert boundary value problem (BVP). After taking a heavy-traffic limit, and restricting ourselves to the symmetric case, the BVP simplifies and can be solved explicitly. In the second part of the paper, allowing for more general (Lévy) input processes and server switching policies, we investigate the transient process limit of the joint workload in heavy traffic. Again solving a BVP, we determine the stationary distribution of the limiting process. We show that, in the symmetric case, this distribution coincides with our earlier solution of the BVP, implying that in this case the two limits (stationarity and heavy traffic) commute.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2022.108</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6433-5470</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2023-09, Vol.60 (3), p.1003-1030
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_2846885354
source Cambridge Journals Online
subjects Approximation
Boundary value problems
Functional equations
Mathematical analysis
Original Article
Polling schemes
Queues
Switches
Traffic
Workload
Workloads
title Workload analysis of a two-queue fluid polling model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Workload%20analysis%20of%20a%20two-queue%20fluid%20polling%20model&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Kapodistria,%20Stella&rft.date=2023-09&rft.volume=60&rft.issue=3&rft.spage=1003&rft.epage=1030&rft.pages=1003-1030&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2022.108&rft_dat=%3Cproquest_cross%3E2846885354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846885354&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2022_108&rfr_iscdi=true