Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction
The search for novel lead-free materials with potential optoelectronic applications is a main research topic nowadays for an environment-friendly energy transition. Based on promising all-inorganic CsPbBr3 perovskite, we tested here the substitution of toxic Pb2+ with Cu2+ and explored the understud...
Gespeichert in:
Veröffentlicht in: | CrystEngComm 2023-08, Vol.25 (31), p.4417-4426 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4426 |
---|---|
container_issue | 31 |
container_start_page | 4417 |
container_title | CrystEngComm |
container_volume | 25 |
creator | Abia, Carmen López, Carlos A Gainza, Javier João Elias F S Rodrigues Fernández-Díaz, María T Céspedes, Eva Martínez, José Luis Alonso, José Antonio |
description | The search for novel lead-free materials with potential optoelectronic applications is a main research topic nowadays for an environment-friendly energy transition. Based on promising all-inorganic CsPbBr3 perovskite, we tested here the substitution of toxic Pb2+ with Cu2+ and explored the understudied CsCuBr3 halide. We present a mechanically-synthesized CsCuBr3 specimen obtained by ball milling, consisting of a well-crystallized and pure sample. Calorimetric measurements revealed a thermal event suggesting a structural phase transition around 422 K, immediately below the decomposition of the sample due to Br loss. A detailed structural analysis was carried out using neutron powder diffraction data from 20 to 420 K, focusing on the evolution of the orthorhombic phase (space-group: C2221) up to 400 K; this crystal arrangement consists of dimer units of face-sharing [CuBr6] octahedra containing Cu–Cu dimers with conspicuously short distances that account for the magnetic coupling between Cu2+ spins described before. Additionally, at 420 K, we identified a novel high-temperature phase as described in the hexagonal P6522 space group, where infinite chains of [CuBr4] square-planar units were observed. An additional study considering the Debye model was carried out, providing information on the relative Cs–Br and Cu–Br chemical bonds. From diffuse reflectance UV-Vis measurements, an optical gap of ∼1.8 eV was estimated for the orthorhombic phase at room temperature. Magnetic measurements indicate that the effective magnetization behavior versus temperature appears close to linear and seems to extrapolate to zero (smaller than 10−5 μB/Cu atom) at temperatures above 420 K, coinciding with onset of phase transition. |
doi_str_mv | 10.1039/d3ce00432e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2846851367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846851367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-9e1add483e38df4d355a5e4117c9716f9295a125daf72196ab8eab92efdc1b03</originalsourceid><addsrcrecordid>eNotTslOwzAUtJCQKMuFL7DEOeAlceIjRGxSBZfeqxf7maQKcfDSqn9PWA6jOcxKyDVnt5xJfWelQcZKKfCErHipVNEwKc_IeYw7xnjJOVuRw5vf40j74aMvEn7OGCDlgHTuISKFyVITjjHBSGMK2fxquPdjToOfqHe0jW1-CJL2MA4W6YIpDW5AS7sjnTCnsPhmf7AYqB2cC2B-opfk1MEY8eqfL8jm6XHTvhTr9-fX9n5dGKFYKjRysLZsJMrGutLKqoIKl-u10TVXTgtdAReVBVcLrhV0DUKnBTpreMfkBbn5q52D_8oY03bnc5iWxa1oStVUXKpafgNOMl4C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846851367</pqid></control><display><type>article</type><title>Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Abia, Carmen ; López, Carlos A ; Gainza, Javier ; João Elias F S Rodrigues ; Fernández-Díaz, María T ; Céspedes, Eva ; Martínez, José Luis ; Alonso, José Antonio</creator><creatorcontrib>Abia, Carmen ; López, Carlos A ; Gainza, Javier ; João Elias F S Rodrigues ; Fernández-Díaz, María T ; Céspedes, Eva ; Martínez, José Luis ; Alonso, José Antonio</creatorcontrib><description>The search for novel lead-free materials with potential optoelectronic applications is a main research topic nowadays for an environment-friendly energy transition. Based on promising all-inorganic CsPbBr3 perovskite, we tested here the substitution of toxic Pb2+ with Cu2+ and explored the understudied CsCuBr3 halide. We present a mechanically-synthesized CsCuBr3 specimen obtained by ball milling, consisting of a well-crystallized and pure sample. Calorimetric measurements revealed a thermal event suggesting a structural phase transition around 422 K, immediately below the decomposition of the sample due to Br loss. A detailed structural analysis was carried out using neutron powder diffraction data from 20 to 420 K, focusing on the evolution of the orthorhombic phase (space-group: C2221) up to 400 K; this crystal arrangement consists of dimer units of face-sharing [CuBr6] octahedra containing Cu–Cu dimers with conspicuously short distances that account for the magnetic coupling between Cu2+ spins described before. Additionally, at 420 K, we identified a novel high-temperature phase as described in the hexagonal P6522 space group, where infinite chains of [CuBr4] square-planar units were observed. An additional study considering the Debye model was carried out, providing information on the relative Cs–Br and Cu–Br chemical bonds. From diffuse reflectance UV-Vis measurements, an optical gap of ∼1.8 eV was estimated for the orthorhombic phase at room temperature. Magnetic measurements indicate that the effective magnetization behavior versus temperature appears close to linear and seems to extrapolate to zero (smaller than 10−5 μB/Cu atom) at temperatures above 420 K, coinciding with onset of phase transition.</description><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d3ce00432e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Ball milling ; Chemical bonds ; Copper ; Crystal structure ; Crystallization ; Dimers ; Evolution ; High temperature ; Lead free ; Magnetic measurement ; Neutron diffraction ; Neutrons ; Optoelectronics ; Orthorhombic phase ; Perovskites ; Phase transitions ; Room temperature ; Structural analysis ; Temperature</subject><ispartof>CrystEngComm, 2023-08, Vol.25 (31), p.4417-4426</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-9e1add483e38df4d355a5e4117c9716f9295a125daf72196ab8eab92efdc1b03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Abia, Carmen</creatorcontrib><creatorcontrib>López, Carlos A</creatorcontrib><creatorcontrib>Gainza, Javier</creatorcontrib><creatorcontrib>João Elias F S Rodrigues</creatorcontrib><creatorcontrib>Fernández-Díaz, María T</creatorcontrib><creatorcontrib>Céspedes, Eva</creatorcontrib><creatorcontrib>Martínez, José Luis</creatorcontrib><creatorcontrib>Alonso, José Antonio</creatorcontrib><title>Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction</title><title>CrystEngComm</title><description>The search for novel lead-free materials with potential optoelectronic applications is a main research topic nowadays for an environment-friendly energy transition. Based on promising all-inorganic CsPbBr3 perovskite, we tested here the substitution of toxic Pb2+ with Cu2+ and explored the understudied CsCuBr3 halide. We present a mechanically-synthesized CsCuBr3 specimen obtained by ball milling, consisting of a well-crystallized and pure sample. Calorimetric measurements revealed a thermal event suggesting a structural phase transition around 422 K, immediately below the decomposition of the sample due to Br loss. A detailed structural analysis was carried out using neutron powder diffraction data from 20 to 420 K, focusing on the evolution of the orthorhombic phase (space-group: C2221) up to 400 K; this crystal arrangement consists of dimer units of face-sharing [CuBr6] octahedra containing Cu–Cu dimers with conspicuously short distances that account for the magnetic coupling between Cu2+ spins described before. Additionally, at 420 K, we identified a novel high-temperature phase as described in the hexagonal P6522 space group, where infinite chains of [CuBr4] square-planar units were observed. An additional study considering the Debye model was carried out, providing information on the relative Cs–Br and Cu–Br chemical bonds. From diffuse reflectance UV-Vis measurements, an optical gap of ∼1.8 eV was estimated for the orthorhombic phase at room temperature. Magnetic measurements indicate that the effective magnetization behavior versus temperature appears close to linear and seems to extrapolate to zero (smaller than 10−5 μB/Cu atom) at temperatures above 420 K, coinciding with onset of phase transition.</description><subject>Ball milling</subject><subject>Chemical bonds</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Dimers</subject><subject>Evolution</subject><subject>High temperature</subject><subject>Lead free</subject><subject>Magnetic measurement</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Optoelectronics</subject><subject>Orthorhombic phase</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Room temperature</subject><subject>Structural analysis</subject><subject>Temperature</subject><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotTslOwzAUtJCQKMuFL7DEOeAlceIjRGxSBZfeqxf7maQKcfDSqn9PWA6jOcxKyDVnt5xJfWelQcZKKfCErHipVNEwKc_IeYw7xnjJOVuRw5vf40j74aMvEn7OGCDlgHTuISKFyVITjjHBSGMK2fxquPdjToOfqHe0jW1-CJL2MA4W6YIpDW5AS7sjnTCnsPhmf7AYqB2cC2B-opfk1MEY8eqfL8jm6XHTvhTr9-fX9n5dGKFYKjRysLZsJMrGutLKqoIKl-u10TVXTgtdAReVBVcLrhV0DUKnBTpreMfkBbn5q52D_8oY03bnc5iWxa1oStVUXKpafgNOMl4C</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Abia, Carmen</creator><creator>López, Carlos A</creator><creator>Gainza, Javier</creator><creator>João Elias F S Rodrigues</creator><creator>Fernández-Díaz, María T</creator><creator>Céspedes, Eva</creator><creator>Martínez, José Luis</creator><creator>Alonso, José Antonio</creator><general>Royal Society of Chemistry</general><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20230807</creationdate><title>Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction</title><author>Abia, Carmen ; López, Carlos A ; Gainza, Javier ; João Elias F S Rodrigues ; Fernández-Díaz, María T ; Céspedes, Eva ; Martínez, José Luis ; Alonso, José Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-9e1add483e38df4d355a5e4117c9716f9295a125daf72196ab8eab92efdc1b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ball milling</topic><topic>Chemical bonds</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Dimers</topic><topic>Evolution</topic><topic>High temperature</topic><topic>Lead free</topic><topic>Magnetic measurement</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Optoelectronics</topic><topic>Orthorhombic phase</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Room temperature</topic><topic>Structural analysis</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abia, Carmen</creatorcontrib><creatorcontrib>López, Carlos A</creatorcontrib><creatorcontrib>Gainza, Javier</creatorcontrib><creatorcontrib>João Elias F S Rodrigues</creatorcontrib><creatorcontrib>Fernández-Díaz, María T</creatorcontrib><creatorcontrib>Céspedes, Eva</creatorcontrib><creatorcontrib>Martínez, José Luis</creatorcontrib><creatorcontrib>Alonso, José Antonio</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abia, Carmen</au><au>López, Carlos A</au><au>Gainza, Javier</au><au>João Elias F S Rodrigues</au><au>Fernández-Díaz, María T</au><au>Céspedes, Eva</au><au>Martínez, José Luis</au><au>Alonso, José Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction</atitle><jtitle>CrystEngComm</jtitle><date>2023-08-07</date><risdate>2023</risdate><volume>25</volume><issue>31</issue><spage>4417</spage><epage>4426</epage><pages>4417-4426</pages><eissn>1466-8033</eissn><abstract>The search for novel lead-free materials with potential optoelectronic applications is a main research topic nowadays for an environment-friendly energy transition. Based on promising all-inorganic CsPbBr3 perovskite, we tested here the substitution of toxic Pb2+ with Cu2+ and explored the understudied CsCuBr3 halide. We present a mechanically-synthesized CsCuBr3 specimen obtained by ball milling, consisting of a well-crystallized and pure sample. Calorimetric measurements revealed a thermal event suggesting a structural phase transition around 422 K, immediately below the decomposition of the sample due to Br loss. A detailed structural analysis was carried out using neutron powder diffraction data from 20 to 420 K, focusing on the evolution of the orthorhombic phase (space-group: C2221) up to 400 K; this crystal arrangement consists of dimer units of face-sharing [CuBr6] octahedra containing Cu–Cu dimers with conspicuously short distances that account for the magnetic coupling between Cu2+ spins described before. Additionally, at 420 K, we identified a novel high-temperature phase as described in the hexagonal P6522 space group, where infinite chains of [CuBr4] square-planar units were observed. An additional study considering the Debye model was carried out, providing information on the relative Cs–Br and Cu–Br chemical bonds. From diffuse reflectance UV-Vis measurements, an optical gap of ∼1.8 eV was estimated for the orthorhombic phase at room temperature. Magnetic measurements indicate that the effective magnetization behavior versus temperature appears close to linear and seems to extrapolate to zero (smaller than 10−5 μB/Cu atom) at temperatures above 420 K, coinciding with onset of phase transition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ce00432e</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1466-8033 |
ispartof | CrystEngComm, 2023-08, Vol.25 (31), p.4417-4426 |
issn | 1466-8033 |
language | eng |
recordid | cdi_proquest_journals_2846851367 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Ball milling Chemical bonds Copper Crystal structure Crystallization Dimers Evolution High temperature Lead free Magnetic measurement Neutron diffraction Neutrons Optoelectronics Orthorhombic phase Perovskites Phase transitions Room temperature Structural analysis Temperature |
title | Novel high-temperature phase and crystal structure evolution of CsCuBr3 halide identified by neutron powder diffraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A01%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20high-temperature%20phase%20and%20crystal%20structure%20evolution%20of%20CsCuBr3%20halide%20identified%20by%20neutron%20powder%20diffraction&rft.jtitle=CrystEngComm&rft.au=Abia,%20Carmen&rft.date=2023-08-07&rft.volume=25&rft.issue=31&rft.spage=4417&rft.epage=4426&rft.pages=4417-4426&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d3ce00432e&rft_dat=%3Cproquest%3E2846851367%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846851367&rft_id=info:pmid/&rfr_iscdi=true |