A linear Bayesian filter for input and state estimation of structural systems
This paper proposes a linear recursive Bayesian filter for minimum variance unbiased joint input and state estimation of structural systems. Unlike the augmented Kalman filter (AKF), the proposed filter falls within the category of Bayesian filters in which unknown inputs are estimated without attri...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2023-09, Vol.38 (13), p.1749-1766 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1766 |
---|---|
container_issue | 13 |
container_start_page | 1749 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 38 |
creator | Ebrahimzadeh Hassanabadi, Mohsen Liu, Zihao Eftekhar Azam, Saeed Dias‐da‐Costa, Daniel |
description | This paper proposes a linear recursive Bayesian filter for minimum variance unbiased joint input and state estimation of structural systems. Unlike the augmented Kalman filter (AKF), the proposed filter falls within the category of Bayesian filters in which unknown inputs are estimated without attributing any fictitious input model or statistics. Also, in contrast with the existing algorithms in the latter category, such as the Gillijns and De Moor Filters (GDFs), the developed filter applies to systems with and without direct feedthrough, in particular, systems with a rank‐deficient feedforward matrix. Because of the latter features, the filter is referred to as universal filter (UF) for convenience. The numerical examples show that the UF performs better than the AKF. Due to its structure, the UF does not require the tuning of the hyperparameters for inputs, and therefore the problematic instability of the AKF is not encountered in the case of a large modeling error variance of the input. For systems with direct feedthrough, the error and covariance propagation terms differ due to the distinct state space. Consequently, the UF can enhance estimations due to the well‐conditionedness of the relevant inversion problem. Moreover, the UF can deal with systems with rank‐deficient feedforward matrix where these systems are not covered by GDFs. |
doi_str_mv | 10.1111/mice.12973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846843556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846843556</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-360cbf00635dd458edb03b1660e1d5906d1c37191ad17c7e7e6d0dca76ec1e143</originalsourceid><addsrcrecordid>eNp9kEFPwzAMhSMEEmNw4RdE4obUES9t0h7HNGDSJi5wjtLElTJ17UhSof57MsqZd7FlfbafHiH3wBaQ9HR0BhewrCS_IDPIhcxKIeRl6lnFs0qU8prchHBgSXnOZ2S_oq3rUHv6rEcMTne0cW1ET5veU9edhkh1Z2mIOiLFEN1RR9d3tG_SzA8mDl63NIwh4jHckqtGtwHv_uqcfL5sPtZv2e79dbte7TLDueQZF8zUDWOCF9bmRYm2ZrwGIRiCLSomLBguoQJtQRqJEoVl1mgp0ABCzufkYbp78v3XkFypQz_4Lr1UyzIXZc6LQiTqcaKM70Pw2KiTT_b9qICpc1zqHJf6jSvBMMHfrsXxH1Ltt-vNtPMD229tCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846843556</pqid></control><display><type>article</type><title>A linear Bayesian filter for input and state estimation of structural systems</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ebrahimzadeh Hassanabadi, Mohsen ; Liu, Zihao ; Eftekhar Azam, Saeed ; Dias‐da‐Costa, Daniel</creator><creatorcontrib>Ebrahimzadeh Hassanabadi, Mohsen ; Liu, Zihao ; Eftekhar Azam, Saeed ; Dias‐da‐Costa, Daniel</creatorcontrib><description>This paper proposes a linear recursive Bayesian filter for minimum variance unbiased joint input and state estimation of structural systems. Unlike the augmented Kalman filter (AKF), the proposed filter falls within the category of Bayesian filters in which unknown inputs are estimated without attributing any fictitious input model or statistics. Also, in contrast with the existing algorithms in the latter category, such as the Gillijns and De Moor Filters (GDFs), the developed filter applies to systems with and without direct feedthrough, in particular, systems with a rank‐deficient feedforward matrix. Because of the latter features, the filter is referred to as universal filter (UF) for convenience. The numerical examples show that the UF performs better than the AKF. Due to its structure, the UF does not require the tuning of the hyperparameters for inputs, and therefore the problematic instability of the AKF is not encountered in the case of a large modeling error variance of the input. For systems with direct feedthrough, the error and covariance propagation terms differ due to the distinct state space. Consequently, the UF can enhance estimations due to the well‐conditionedness of the relevant inversion problem. Moreover, the UF can deal with systems with rank‐deficient feedforward matrix where these systems are not covered by GDFs.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12973</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Bayesian analysis ; Kalman filters ; State estimation ; Variance</subject><ispartof>Computer-aided civil and infrastructure engineering, 2023-09, Vol.38 (13), p.1749-1766</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of Editor.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-360cbf00635dd458edb03b1660e1d5906d1c37191ad17c7e7e6d0dca76ec1e143</citedby><cites>FETCH-LOGICAL-c3373-360cbf00635dd458edb03b1660e1d5906d1c37191ad17c7e7e6d0dca76ec1e143</cites><orcidid>0000-0002-2950-2237 ; 0000-0002-0953-6157 ; 0000-0002-5048-8644 ; 0000-0001-8153-5506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12973$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12973$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ebrahimzadeh Hassanabadi, Mohsen</creatorcontrib><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Eftekhar Azam, Saeed</creatorcontrib><creatorcontrib>Dias‐da‐Costa, Daniel</creatorcontrib><title>A linear Bayesian filter for input and state estimation of structural systems</title><title>Computer-aided civil and infrastructure engineering</title><description>This paper proposes a linear recursive Bayesian filter for minimum variance unbiased joint input and state estimation of structural systems. Unlike the augmented Kalman filter (AKF), the proposed filter falls within the category of Bayesian filters in which unknown inputs are estimated without attributing any fictitious input model or statistics. Also, in contrast with the existing algorithms in the latter category, such as the Gillijns and De Moor Filters (GDFs), the developed filter applies to systems with and without direct feedthrough, in particular, systems with a rank‐deficient feedforward matrix. Because of the latter features, the filter is referred to as universal filter (UF) for convenience. The numerical examples show that the UF performs better than the AKF. Due to its structure, the UF does not require the tuning of the hyperparameters for inputs, and therefore the problematic instability of the AKF is not encountered in the case of a large modeling error variance of the input. For systems with direct feedthrough, the error and covariance propagation terms differ due to the distinct state space. Consequently, the UF can enhance estimations due to the well‐conditionedness of the relevant inversion problem. Moreover, the UF can deal with systems with rank‐deficient feedforward matrix where these systems are not covered by GDFs.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Kalman filters</subject><subject>State estimation</subject><subject>Variance</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp9kEFPwzAMhSMEEmNw4RdE4obUES9t0h7HNGDSJi5wjtLElTJ17UhSof57MsqZd7FlfbafHiH3wBaQ9HR0BhewrCS_IDPIhcxKIeRl6lnFs0qU8prchHBgSXnOZ2S_oq3rUHv6rEcMTne0cW1ET5veU9edhkh1Z2mIOiLFEN1RR9d3tG_SzA8mDl63NIwh4jHckqtGtwHv_uqcfL5sPtZv2e79dbte7TLDueQZF8zUDWOCF9bmRYm2ZrwGIRiCLSomLBguoQJtQRqJEoVl1mgp0ABCzufkYbp78v3XkFypQz_4Lr1UyzIXZc6LQiTqcaKM70Pw2KiTT_b9qICpc1zqHJf6jSvBMMHfrsXxH1Ltt-vNtPMD229tCw</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Ebrahimzadeh Hassanabadi, Mohsen</creator><creator>Liu, Zihao</creator><creator>Eftekhar Azam, Saeed</creator><creator>Dias‐da‐Costa, Daniel</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2950-2237</orcidid><orcidid>https://orcid.org/0000-0002-0953-6157</orcidid><orcidid>https://orcid.org/0000-0002-5048-8644</orcidid><orcidid>https://orcid.org/0000-0001-8153-5506</orcidid></search><sort><creationdate>20230901</creationdate><title>A linear Bayesian filter for input and state estimation of structural systems</title><author>Ebrahimzadeh Hassanabadi, Mohsen ; Liu, Zihao ; Eftekhar Azam, Saeed ; Dias‐da‐Costa, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-360cbf00635dd458edb03b1660e1d5906d1c37191ad17c7e7e6d0dca76ec1e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Kalman filters</topic><topic>State estimation</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimzadeh Hassanabadi, Mohsen</creatorcontrib><creatorcontrib>Liu, Zihao</creatorcontrib><creatorcontrib>Eftekhar Azam, Saeed</creatorcontrib><creatorcontrib>Dias‐da‐Costa, Daniel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahimzadeh Hassanabadi, Mohsen</au><au>Liu, Zihao</au><au>Eftekhar Azam, Saeed</au><au>Dias‐da‐Costa, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear Bayesian filter for input and state estimation of structural systems</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>13</issue><spage>1749</spage><epage>1766</epage><pages>1749-1766</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This paper proposes a linear recursive Bayesian filter for minimum variance unbiased joint input and state estimation of structural systems. Unlike the augmented Kalman filter (AKF), the proposed filter falls within the category of Bayesian filters in which unknown inputs are estimated without attributing any fictitious input model or statistics. Also, in contrast with the existing algorithms in the latter category, such as the Gillijns and De Moor Filters (GDFs), the developed filter applies to systems with and without direct feedthrough, in particular, systems with a rank‐deficient feedforward matrix. Because of the latter features, the filter is referred to as universal filter (UF) for convenience. The numerical examples show that the UF performs better than the AKF. Due to its structure, the UF does not require the tuning of the hyperparameters for inputs, and therefore the problematic instability of the AKF is not encountered in the case of a large modeling error variance of the input. For systems with direct feedthrough, the error and covariance propagation terms differ due to the distinct state space. Consequently, the UF can enhance estimations due to the well‐conditionedness of the relevant inversion problem. Moreover, the UF can deal with systems with rank‐deficient feedforward matrix where these systems are not covered by GDFs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12973</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2950-2237</orcidid><orcidid>https://orcid.org/0000-0002-0953-6157</orcidid><orcidid>https://orcid.org/0000-0002-5048-8644</orcidid><orcidid>https://orcid.org/0000-0001-8153-5506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2023-09, Vol.38 (13), p.1749-1766 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2846843556 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Bayesian analysis Kalman filters State estimation Variance |
title | A linear Bayesian filter for input and state estimation of structural systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear%20Bayesian%20filter%20for%20input%20and%20state%20estimation%20of%20structural%20systems&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Ebrahimzadeh%20Hassanabadi,%20Mohsen&rft.date=2023-09-01&rft.volume=38&rft.issue=13&rft.spage=1749&rft.epage=1766&rft.pages=1749-1766&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12973&rft_dat=%3Cproquest_cross%3E2846843556%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846843556&rft_id=info:pmid/&rfr_iscdi=true |