Heat Transfer and Performance Enhancement of Porous Split Elliptical Fins
To augment the heat transfer phenomenon, the infusion of various fin geometry over the heated plate is being investigated by various researchers. Solid fins of the porous medium can enhance the convective heat transfer, providing a higher surface area-to-volume ratio for heat transfer. In this work,...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2023-07, Vol.2023, p.1-26 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | International journal of energy research |
container_volume | 2023 |
creator | Ranjan, Alok Das, Ranjan Barik, Debabrata Pal, Sagnik Majumder, Arindam Deb, Madhujit Dennison, Milon Selvam |
description | To augment the heat transfer phenomenon, the infusion of various fin geometry over the heated plate is being investigated by various researchers. Solid fins of the porous medium can enhance the convective heat transfer, providing a higher surface area-to-volume ratio for heat transfer. In this work, the fluid flow pattern and thermodynamic analysis of porous-based split elliptical fins mounted staggered over a heated base plate is numerically studied with the Reynolds numbers in the range of 783 to 1839, which is dependent on the fin dimension. The variable parameters were dimensionless transverse offset (TO∗=transverse offset/diameter), which varied from 0 to 0.5; dimensionless longitudinal offset (LO∗=longitudinal offset/diameter), which varied from 0 to 0.25; porosity (ɸ), which varies from 0.8 to 0.92; pores per inch (PPI), which was 10; permeability (Pn); and inertial parameter (F). To count the viscous and inertial effect inside the porous zone, the Forchheimer–Brinkman extended Darcy model was adopted. The associated parameters, the Nusselt number (Nu), frictional coefficient (Cf), and performance evaluation criteria (PEC), are thoroughly analyzed over the TO∗ and LO∗ combination. The results of the investigation revealed that the highest value of Nu and PEC was obtained by TO∗=0.5 and LO∗=0 at ɸ=0.92, which were approximately 54% and 79% higher than the solid circular fin at Re=1839. Additionally, a response function based on Nu was obtained using the response surface method, and cuckoo optimization was assessed to identify the optimal Nu. The optimal Nu is established at TO∗=0.4141 and LO∗=0 (ɸ=0.92 and Re=1839) and was validated with the present investigation with an accuracy of 1.20%. |
doi_str_mv | 10.1155/2023/9206017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846824742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846824742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-72fd5b187abed773c5f3421d8fff3fd2185ca607aee0812ee8bc9e468bc04fc63</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoWKc3P0DAo9blT9u0RxmbGwwcOGG3kKZvWEaX1KRD_Pa2bGdPz-F9-L3wIPRIySuleT5lhPFpxUhBqLhCCSVVlVKa7a5RQnjB04qI3S26i_FAyHCjIkGrJageb4Ny0UDAyjV4A8H4cFROA567_cgjuB57gzc--FPEn11rezxvW9v1VqsWL6yL9-jGqDbCw4UT9LWYb2fLdP3xvpq9rVPNuehTwUyT17QUqoZGCK5zwzNGm9IYw03DaJlrVRChAEhJGUBZ6wqyYgDJjC74BD2dd7vgv08Qe3nwp-CGl5KVg8cykbHBejlbOvgYAxjZBXtU4VdSIsdYcowlL7EG_fms761r1I_93_4D0UdpJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846824742</pqid></control><display><type>article</type><title>Heat Transfer and Performance Enhancement of Porous Split Elliptical Fins</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ranjan, Alok ; Das, Ranjan ; Barik, Debabrata ; Pal, Sagnik ; Majumder, Arindam ; Deb, Madhujit ; Dennison, Milon Selvam</creator><contributor>Yu, Guojun ; Guojun Yu</contributor><creatorcontrib>Ranjan, Alok ; Das, Ranjan ; Barik, Debabrata ; Pal, Sagnik ; Majumder, Arindam ; Deb, Madhujit ; Dennison, Milon Selvam ; Yu, Guojun ; Guojun Yu</creatorcontrib><description>To augment the heat transfer phenomenon, the infusion of various fin geometry over the heated plate is being investigated by various researchers. Solid fins of the porous medium can enhance the convective heat transfer, providing a higher surface area-to-volume ratio for heat transfer. In this work, the fluid flow pattern and thermodynamic analysis of porous-based split elliptical fins mounted staggered over a heated base plate is numerically studied with the Reynolds numbers in the range of 783 to 1839, which is dependent on the fin dimension. The variable parameters were dimensionless transverse offset (TO∗=transverse offset/diameter), which varied from 0 to 0.5; dimensionless longitudinal offset (LO∗=longitudinal offset/diameter), which varied from 0 to 0.25; porosity (ɸ), which varies from 0.8 to 0.92; pores per inch (PPI), which was 10; permeability (Pn); and inertial parameter (F). To count the viscous and inertial effect inside the porous zone, the Forchheimer–Brinkman extended Darcy model was adopted. The associated parameters, the Nusselt number (Nu), frictional coefficient (Cf), and performance evaluation criteria (PEC), are thoroughly analyzed over the TO∗ and LO∗ combination. The results of the investigation revealed that the highest value of Nu and PEC was obtained by TO∗=0.5 and LO∗=0 at ɸ=0.92, which were approximately 54% and 79% higher than the solid circular fin at Re=1839. Additionally, a response function based on Nu was obtained using the response surface method, and cuckoo optimization was assessed to identify the optimal Nu. The optimal Nu is established at TO∗=0.4141 and LO∗=0 (ɸ=0.92 and Re=1839) and was validated with the present investigation with an accuracy of 1.20%.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2023/9206017</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Base plates ; Convection ; Convective heat transfer ; Diameters ; Equilibrium ; Fins ; Flow distribution ; Flow pattern ; Fluid flow ; Heat exchangers ; Heat transfer ; Membrane permeability ; Numerical analysis ; Optimization ; Optimization techniques ; Parameters ; Pattern analysis ; Performance enhancement ; Performance evaluation ; Permeability ; Porosity ; Porous materials ; Porous media ; Response functions ; Response surface methodology ; Reynolds number ; Thermal energy</subject><ispartof>International journal of energy research, 2023-07, Vol.2023, p.1-26</ispartof><rights>Copyright © 2023 Alok Ranjan et al.</rights><rights>Copyright © 2023 Alok Ranjan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-72fd5b187abed773c5f3421d8fff3fd2185ca607aee0812ee8bc9e468bc04fc63</citedby><cites>FETCH-LOGICAL-c337t-72fd5b187abed773c5f3421d8fff3fd2185ca607aee0812ee8bc9e468bc04fc63</cites><orcidid>0000-0001-9693-5895 ; 0000-0001-8923-3158 ; 0000-0003-3371-4619 ; 0000-0002-2012-9288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2846824742/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2846824742?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,873,21367,27901,27902,33721,43781,74045</link.rule.ids></links><search><contributor>Yu, Guojun</contributor><contributor>Guojun Yu</contributor><creatorcontrib>Ranjan, Alok</creatorcontrib><creatorcontrib>Das, Ranjan</creatorcontrib><creatorcontrib>Barik, Debabrata</creatorcontrib><creatorcontrib>Pal, Sagnik</creatorcontrib><creatorcontrib>Majumder, Arindam</creatorcontrib><creatorcontrib>Deb, Madhujit</creatorcontrib><creatorcontrib>Dennison, Milon Selvam</creatorcontrib><title>Heat Transfer and Performance Enhancement of Porous Split Elliptical Fins</title><title>International journal of energy research</title><description>To augment the heat transfer phenomenon, the infusion of various fin geometry over the heated plate is being investigated by various researchers. Solid fins of the porous medium can enhance the convective heat transfer, providing a higher surface area-to-volume ratio for heat transfer. In this work, the fluid flow pattern and thermodynamic analysis of porous-based split elliptical fins mounted staggered over a heated base plate is numerically studied with the Reynolds numbers in the range of 783 to 1839, which is dependent on the fin dimension. The variable parameters were dimensionless transverse offset (TO∗=transverse offset/diameter), which varied from 0 to 0.5; dimensionless longitudinal offset (LO∗=longitudinal offset/diameter), which varied from 0 to 0.25; porosity (ɸ), which varies from 0.8 to 0.92; pores per inch (PPI), which was 10; permeability (Pn); and inertial parameter (F). To count the viscous and inertial effect inside the porous zone, the Forchheimer–Brinkman extended Darcy model was adopted. The associated parameters, the Nusselt number (Nu), frictional coefficient (Cf), and performance evaluation criteria (PEC), are thoroughly analyzed over the TO∗ and LO∗ combination. The results of the investigation revealed that the highest value of Nu and PEC was obtained by TO∗=0.5 and LO∗=0 at ɸ=0.92, which were approximately 54% and 79% higher than the solid circular fin at Re=1839. Additionally, a response function based on Nu was obtained using the response surface method, and cuckoo optimization was assessed to identify the optimal Nu. The optimal Nu is established at TO∗=0.4141 and LO∗=0 (ɸ=0.92 and Re=1839) and was validated with the present investigation with an accuracy of 1.20%.</description><subject>Base plates</subject><subject>Convection</subject><subject>Convective heat transfer</subject><subject>Diameters</subject><subject>Equilibrium</subject><subject>Fins</subject><subject>Flow distribution</subject><subject>Flow pattern</subject><subject>Fluid flow</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Membrane permeability</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Parameters</subject><subject>Pattern analysis</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Response functions</subject><subject>Response surface methodology</subject><subject>Reynolds number</subject><subject>Thermal energy</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LwzAYh4MoWKc3P0DAo9blT9u0RxmbGwwcOGG3kKZvWEaX1KRD_Pa2bGdPz-F9-L3wIPRIySuleT5lhPFpxUhBqLhCCSVVlVKa7a5RQnjB04qI3S26i_FAyHCjIkGrJageb4Ny0UDAyjV4A8H4cFROA567_cgjuB57gzc--FPEn11rezxvW9v1VqsWL6yL9-jGqDbCw4UT9LWYb2fLdP3xvpq9rVPNuehTwUyT17QUqoZGCK5zwzNGm9IYw03DaJlrVRChAEhJGUBZ6wqyYgDJjC74BD2dd7vgv08Qe3nwp-CGl5KVg8cykbHBejlbOvgYAxjZBXtU4VdSIsdYcowlL7EG_fms761r1I_93_4D0UdpJw</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>Ranjan, Alok</creator><creator>Das, Ranjan</creator><creator>Barik, Debabrata</creator><creator>Pal, Sagnik</creator><creator>Majumder, Arindam</creator><creator>Deb, Madhujit</creator><creator>Dennison, Milon Selvam</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9693-5895</orcidid><orcidid>https://orcid.org/0000-0001-8923-3158</orcidid><orcidid>https://orcid.org/0000-0003-3371-4619</orcidid><orcidid>https://orcid.org/0000-0002-2012-9288</orcidid></search><sort><creationdate>20230724</creationdate><title>Heat Transfer and Performance Enhancement of Porous Split Elliptical Fins</title><author>Ranjan, Alok ; Das, Ranjan ; Barik, Debabrata ; Pal, Sagnik ; Majumder, Arindam ; Deb, Madhujit ; Dennison, Milon Selvam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-72fd5b187abed773c5f3421d8fff3fd2185ca607aee0812ee8bc9e468bc04fc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Base plates</topic><topic>Convection</topic><topic>Convective heat transfer</topic><topic>Diameters</topic><topic>Equilibrium</topic><topic>Fins</topic><topic>Flow distribution</topic><topic>Flow pattern</topic><topic>Fluid flow</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Membrane permeability</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Parameters</topic><topic>Pattern analysis</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Response functions</topic><topic>Response surface methodology</topic><topic>Reynolds number</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Alok</creatorcontrib><creatorcontrib>Das, Ranjan</creatorcontrib><creatorcontrib>Barik, Debabrata</creatorcontrib><creatorcontrib>Pal, Sagnik</creatorcontrib><creatorcontrib>Majumder, Arindam</creatorcontrib><creatorcontrib>Deb, Madhujit</creatorcontrib><creatorcontrib>Dennison, Milon Selvam</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjan, Alok</au><au>Das, Ranjan</au><au>Barik, Debabrata</au><au>Pal, Sagnik</au><au>Majumder, Arindam</au><au>Deb, Madhujit</au><au>Dennison, Milon Selvam</au><au>Yu, Guojun</au><au>Guojun Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer and Performance Enhancement of Porous Split Elliptical Fins</atitle><jtitle>International journal of energy research</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>26</epage><pages>1-26</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>To augment the heat transfer phenomenon, the infusion of various fin geometry over the heated plate is being investigated by various researchers. Solid fins of the porous medium can enhance the convective heat transfer, providing a higher surface area-to-volume ratio for heat transfer. In this work, the fluid flow pattern and thermodynamic analysis of porous-based split elliptical fins mounted staggered over a heated base plate is numerically studied with the Reynolds numbers in the range of 783 to 1839, which is dependent on the fin dimension. The variable parameters were dimensionless transverse offset (TO∗=transverse offset/diameter), which varied from 0 to 0.5; dimensionless longitudinal offset (LO∗=longitudinal offset/diameter), which varied from 0 to 0.25; porosity (ɸ), which varies from 0.8 to 0.92; pores per inch (PPI), which was 10; permeability (Pn); and inertial parameter (F). To count the viscous and inertial effect inside the porous zone, the Forchheimer–Brinkman extended Darcy model was adopted. The associated parameters, the Nusselt number (Nu), frictional coefficient (Cf), and performance evaluation criteria (PEC), are thoroughly analyzed over the TO∗ and LO∗ combination. The results of the investigation revealed that the highest value of Nu and PEC was obtained by TO∗=0.5 and LO∗=0 at ɸ=0.92, which were approximately 54% and 79% higher than the solid circular fin at Re=1839. Additionally, a response function based on Nu was obtained using the response surface method, and cuckoo optimization was assessed to identify the optimal Nu. The optimal Nu is established at TO∗=0.4141 and LO∗=0 (ɸ=0.92 and Re=1839) and was validated with the present investigation with an accuracy of 1.20%.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2023/9206017</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-9693-5895</orcidid><orcidid>https://orcid.org/0000-0001-8923-3158</orcidid><orcidid>https://orcid.org/0000-0003-3371-4619</orcidid><orcidid>https://orcid.org/0000-0002-2012-9288</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2023-07, Vol.2023, p.1-26 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2846824742 |
source | Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Base plates Convection Convective heat transfer Diameters Equilibrium Fins Flow distribution Flow pattern Fluid flow Heat exchangers Heat transfer Membrane permeability Numerical analysis Optimization Optimization techniques Parameters Pattern analysis Performance enhancement Performance evaluation Permeability Porosity Porous materials Porous media Response functions Response surface methodology Reynolds number Thermal energy |
title | Heat Transfer and Performance Enhancement of Porous Split Elliptical Fins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20and%20Performance%20Enhancement%20of%20Porous%20Split%20Elliptical%20Fins&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Ranjan,%20Alok&rft.date=2023-07-24&rft.volume=2023&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2023/9206017&rft_dat=%3Cproquest_cross%3E2846824742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846824742&rft_id=info:pmid/&rfr_iscdi=true |