Coefficients of Multilinear Forms on Sequence Spaces
The investigation of regularity/summability properties of the coefficients of bilinear forms in sequence spaces was initiated by Littlewood in 1930. Nowadays, this topic has important connections with other fields of Pure and Applied Mathematics. In this paper we explore a regularity technique to ob...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Brasileira de Matemática 2023-09, Vol.54 (3), Article 43 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Boletim da Sociedade Brasileira de Matemática |
container_volume | 54 |
creator | Raposo, Anselmo Serrano-Rodríguez, Diana M. |
description | The investigation of regularity/summability properties of the coefficients of bilinear forms in sequence spaces was initiated by Littlewood in 1930. Nowadays, this topic has important connections with other fields of Pure and Applied Mathematics. In this paper we explore a regularity technique to obtain optimal parameters for several results in this framework, extending/generalizing theorems of Osikiewicz and Tonge (Linear Algebra Appl 331:1–9, 2001), Albuquerque et al. (J Funct Anal 266:3726–3740, 2016), Aron et al. (Linear Algebra Appl 531:399–422, 2017), Albuquerque and Rezende (Commun Contemp Math 20:1750087, 2018), Paulino (Rend Circ Mat Palermo 69:369–380, 2020), among others. |
doi_str_mv | 10.1007/s00574-023-00359-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846531712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846531712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-561dcd5092fbebb6905b50c04e3af4d269e508c48d0c6400e855410448ce7f93</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJM0naoyyuCisedu-hTSfSpdvWpHvw3xut4s3TvAzvBzyMXQu4FQDmLgIogxxyyQGkKrk8YQuhTcGNEXj6qxXiObuIcQ8AWim5YLgayPvWtdRPMRt89nLsprZre6pCth7CIT37bEvvR-odZduxchQv2ZmvukhXP3fJduuH3eqJb14fn1f3G-6klhNXWjSuUVDmvqa61iWoWoEDJFl5bHJdkoLCYdGA0whAhVIoALFwZHwpl-xmrh3DkPbjZPfDMfRp0eYFaiWFEXly5bPLhSHGQN6OoT1U4cMKsF9w7AzHJjj2G46VKSTnUEzm_o3CX_U_qU8YaGWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846531712</pqid></control><display><type>article</type><title>Coefficients of Multilinear Forms on Sequence Spaces</title><source>SpringerLink Journals</source><creator>Raposo, Anselmo ; Serrano-Rodríguez, Diana M.</creator><creatorcontrib>Raposo, Anselmo ; Serrano-Rodríguez, Diana M.</creatorcontrib><description>The investigation of regularity/summability properties of the coefficients of bilinear forms in sequence spaces was initiated by Littlewood in 1930. Nowadays, this topic has important connections with other fields of Pure and Applied Mathematics. In this paper we explore a regularity technique to obtain optimal parameters for several results in this framework, extending/generalizing theorems of Osikiewicz and Tonge (Linear Algebra Appl 331:1–9, 2001), Albuquerque et al. (J Funct Anal 266:3726–3740, 2016), Aron et al. (Linear Algebra Appl 531:399–422, 2017), Albuquerque and Rezende (Commun Contemp Math 20:1750087, 2018), Paulino (Rend Circ Mat Palermo 69:369–380, 2020), among others.</description><identifier>ISSN: 1678-7544</identifier><identifier>EISSN: 1678-7714</identifier><identifier>DOI: 10.1007/s00574-023-00359-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of mathematics ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Regularity ; Theoretical</subject><ispartof>Boletim da Sociedade Brasileira de Matemática, 2023-09, Vol.54 (3), Article 43</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-561dcd5092fbebb6905b50c04e3af4d269e508c48d0c6400e855410448ce7f93</citedby><cites>FETCH-LOGICAL-c363t-561dcd5092fbebb6905b50c04e3af4d269e508c48d0c6400e855410448ce7f93</cites><orcidid>0000-0002-5947-998X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00574-023-00359-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00574-023-00359-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Raposo, Anselmo</creatorcontrib><creatorcontrib>Serrano-Rodríguez, Diana M.</creatorcontrib><title>Coefficients of Multilinear Forms on Sequence Spaces</title><title>Boletim da Sociedade Brasileira de Matemática</title><addtitle>Bull Braz Math Soc, New Series</addtitle><description>The investigation of regularity/summability properties of the coefficients of bilinear forms in sequence spaces was initiated by Littlewood in 1930. Nowadays, this topic has important connections with other fields of Pure and Applied Mathematics. In this paper we explore a regularity technique to obtain optimal parameters for several results in this framework, extending/generalizing theorems of Osikiewicz and Tonge (Linear Algebra Appl 331:1–9, 2001), Albuquerque et al. (J Funct Anal 266:3726–3740, 2016), Aron et al. (Linear Algebra Appl 531:399–422, 2017), Albuquerque and Rezende (Commun Contemp Math 20:1750087, 2018), Paulino (Rend Circ Mat Palermo 69:369–380, 2020), among others.</description><subject>Applications of mathematics</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><subject>Theoretical</subject><issn>1678-7544</issn><issn>1678-7714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9FJM0naoyyuCisedu-hTSfSpdvWpHvw3xut4s3TvAzvBzyMXQu4FQDmLgIogxxyyQGkKrk8YQuhTcGNEXj6qxXiObuIcQ8AWim5YLgayPvWtdRPMRt89nLsprZre6pCth7CIT37bEvvR-odZduxchQv2ZmvukhXP3fJduuH3eqJb14fn1f3G-6klhNXWjSuUVDmvqa61iWoWoEDJFl5bHJdkoLCYdGA0whAhVIoALFwZHwpl-xmrh3DkPbjZPfDMfRp0eYFaiWFEXly5bPLhSHGQN6OoT1U4cMKsF9w7AzHJjj2G46VKSTnUEzm_o3CX_U_qU8YaGWo</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Raposo, Anselmo</creator><creator>Serrano-Rodríguez, Diana M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5947-998X</orcidid></search><sort><creationdate>20230901</creationdate><title>Coefficients of Multilinear Forms on Sequence Spaces</title><author>Raposo, Anselmo ; Serrano-Rodríguez, Diana M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-561dcd5092fbebb6905b50c04e3af4d269e508c48d0c6400e855410448ce7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of mathematics</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raposo, Anselmo</creatorcontrib><creatorcontrib>Serrano-Rodríguez, Diana M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raposo, Anselmo</au><au>Serrano-Rodríguez, Diana M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficients of Multilinear Forms on Sequence Spaces</atitle><jtitle>Boletim da Sociedade Brasileira de Matemática</jtitle><stitle>Bull Braz Math Soc, New Series</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>54</volume><issue>3</issue><artnum>43</artnum><issn>1678-7544</issn><eissn>1678-7714</eissn><abstract>The investigation of regularity/summability properties of the coefficients of bilinear forms in sequence spaces was initiated by Littlewood in 1930. Nowadays, this topic has important connections with other fields of Pure and Applied Mathematics. In this paper we explore a regularity technique to obtain optimal parameters for several results in this framework, extending/generalizing theorems of Osikiewicz and Tonge (Linear Algebra Appl 331:1–9, 2001), Albuquerque et al. (J Funct Anal 266:3726–3740, 2016), Aron et al. (Linear Algebra Appl 531:399–422, 2017), Albuquerque and Rezende (Commun Contemp Math 20:1750087, 2018), Paulino (Rend Circ Mat Palermo 69:369–380, 2020), among others.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00574-023-00359-3</doi><orcidid>https://orcid.org/0000-0002-5947-998X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-7544 |
ispartof | Boletim da Sociedade Brasileira de Matemática, 2023-09, Vol.54 (3), Article 43 |
issn | 1678-7544 1678-7714 |
language | eng |
recordid | cdi_proquest_journals_2846531712 |
source | SpringerLink Journals |
subjects | Applications of mathematics Linear algebra Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Regularity Theoretical |
title | Coefficients of Multilinear Forms on Sequence Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficients%20of%20Multilinear%20Forms%20on%20Sequence%20Spaces&rft.jtitle=Boletim%20da%20Sociedade%20Brasileira%20de%20Matem%C3%A1tica&rft.au=Raposo,%20Anselmo&rft.date=2023-09-01&rft.volume=54&rft.issue=3&rft.artnum=43&rft.issn=1678-7544&rft.eissn=1678-7714&rft_id=info:doi/10.1007/s00574-023-00359-3&rft_dat=%3Cproquest_cross%3E2846531712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846531712&rft_id=info:pmid/&rfr_iscdi=true |