Thermal characteristics and model-free kinetics of oil shale samples

This research investigates the non-isothermal thermogravimetric analysis and kinetics of oil shale samples at different heating rates and in the air atmosphere. In all the oil shale samples studied, the TG-DTG curves indicated that the decomposition of oil shale samples followed two successive react...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2023-09, Vol.148 (17), p.8933-8943
Hauptverfasser: Kok, Mustafa Versan, Bal, Berk, Varfolomeev, Mikhail A., Nurgaliev, Danis K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8943
container_issue 17
container_start_page 8933
container_title Journal of thermal analysis and calorimetry
container_volume 148
creator Kok, Mustafa Versan
Bal, Berk
Varfolomeev, Mikhail A.
Nurgaliev, Danis K.
description This research investigates the non-isothermal thermogravimetric analysis and kinetics of oil shale samples at different heating rates and in the air atmosphere. In all the oil shale samples studied, the TG-DTG curves indicated that the decomposition of oil shale samples followed two successive reaction stages in different temperature intervals, known as combustion and mineral decomposition. This stage determines reaction intervals, peak temperature, mass loss, and derivative mass loss rate values of oil shale samples. At the same time, the different combustibility indices such as the ignition index, combustion index, and reactivity of oil shale samples are also determined. Also, for each reaction region, activation energy values were calculated using four different model-free methods known as Kissinger—Akahira—Sunose, Ozawa—Flynn—Wall, starink, and distributed activation energy model. In combustion and mineral decomposition regions, the activation energy values varied between 122.9–162.5 kJ mol −1 and 169.9–264.2 kJ mol −1 , respectively. At the same time, kinetic models were validated by comparing the experimental and simulated conversion curves.
doi_str_mv 10.1007/s10973-023-12307-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846274221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846274221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-45a02756dbef08df5459067ddf060461b363f6de290cc32943b08f75dac652d83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgOnqSTJLJUuoVCm7qOqS52KlzqcmU4tsbO4I7V-fn8F_gQ-iKwg0FULeZglacAOOEMg6K7I_QjIq6JkwzeVw0L1pSAafoLOcNAGgNdIbul-uQOttit7bJujGkJo-Ny9j2HneDDy2JKQT80fTh8B8iHpoW57VtA86227YhX6CTaNscLn_vOXp7fFjOn8ni9ellfrcgjlM9kkpYYEpIvwoRah9FJTRI5X0ECZWkKy55lD4wDc5xpiu-gjoq4a2Tgvman6PrqXebhs9dyKPZDLvUl0nD6koyVTFGi4tNLpeGnFOIZpuazqYvQ8H80DITLVNomQMtsy8hPoVyMffvIf1V_5P6Bgz7bN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846274221</pqid></control><display><type>article</type><title>Thermal characteristics and model-free kinetics of oil shale samples</title><source>Springer Online Journals Complete</source><creator>Kok, Mustafa Versan ; Bal, Berk ; Varfolomeev, Mikhail A. ; Nurgaliev, Danis K.</creator><creatorcontrib>Kok, Mustafa Versan ; Bal, Berk ; Varfolomeev, Mikhail A. ; Nurgaliev, Danis K.</creatorcontrib><description>This research investigates the non-isothermal thermogravimetric analysis and kinetics of oil shale samples at different heating rates and in the air atmosphere. In all the oil shale samples studied, the TG-DTG curves indicated that the decomposition of oil shale samples followed two successive reaction stages in different temperature intervals, known as combustion and mineral decomposition. This stage determines reaction intervals, peak temperature, mass loss, and derivative mass loss rate values of oil shale samples. At the same time, the different combustibility indices such as the ignition index, combustion index, and reactivity of oil shale samples are also determined. Also, for each reaction region, activation energy values were calculated using four different model-free methods known as Kissinger—Akahira—Sunose, Ozawa—Flynn—Wall, starink, and distributed activation energy model. In combustion and mineral decomposition regions, the activation energy values varied between 122.9–162.5 kJ mol −1 and 169.9–264.2 kJ mol −1 , respectively. At the same time, kinetic models were validated by comparing the experimental and simulated conversion curves.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-023-12307-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Activation energy ; Analytical Chemistry ; Atmospheric models ; Chemistry ; Chemistry and Materials Science ; Combustion ; Decomposition ; Decomposition reactions ; Energy value ; Heat treating ; Inorganic Chemistry ; Intervals ; Kinetics ; Measurement Science and Instrumentation ; Oil shale ; Physical Chemistry ; Polymer Sciences ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2023-09, Vol.148 (17), p.8933-8943</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-45a02756dbef08df5459067ddf060461b363f6de290cc32943b08f75dac652d83</citedby><cites>FETCH-LOGICAL-c319t-45a02756dbef08df5459067ddf060461b363f6de290cc32943b08f75dac652d83</cites><orcidid>0000-0002-1180-5862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-023-12307-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-023-12307-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kok, Mustafa Versan</creatorcontrib><creatorcontrib>Bal, Berk</creatorcontrib><creatorcontrib>Varfolomeev, Mikhail A.</creatorcontrib><creatorcontrib>Nurgaliev, Danis K.</creatorcontrib><title>Thermal characteristics and model-free kinetics of oil shale samples</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This research investigates the non-isothermal thermogravimetric analysis and kinetics of oil shale samples at different heating rates and in the air atmosphere. In all the oil shale samples studied, the TG-DTG curves indicated that the decomposition of oil shale samples followed two successive reaction stages in different temperature intervals, known as combustion and mineral decomposition. This stage determines reaction intervals, peak temperature, mass loss, and derivative mass loss rate values of oil shale samples. At the same time, the different combustibility indices such as the ignition index, combustion index, and reactivity of oil shale samples are also determined. Also, for each reaction region, activation energy values were calculated using four different model-free methods known as Kissinger—Akahira—Sunose, Ozawa—Flynn—Wall, starink, and distributed activation energy model. In combustion and mineral decomposition regions, the activation energy values varied between 122.9–162.5 kJ mol −1 and 169.9–264.2 kJ mol −1 , respectively. At the same time, kinetic models were validated by comparing the experimental and simulated conversion curves.</description><subject>Activation energy</subject><subject>Analytical Chemistry</subject><subject>Atmospheric models</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Combustion</subject><subject>Decomposition</subject><subject>Decomposition reactions</subject><subject>Energy value</subject><subject>Heat treating</subject><subject>Inorganic Chemistry</subject><subject>Intervals</subject><subject>Kinetics</subject><subject>Measurement Science and Instrumentation</subject><subject>Oil shale</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgOnqSTJLJUuoVCm7qOqS52KlzqcmU4tsbO4I7V-fn8F_gQ-iKwg0FULeZglacAOOEMg6K7I_QjIq6JkwzeVw0L1pSAafoLOcNAGgNdIbul-uQOttit7bJujGkJo-Ny9j2HneDDy2JKQT80fTh8B8iHpoW57VtA86227YhX6CTaNscLn_vOXp7fFjOn8ni9ellfrcgjlM9kkpYYEpIvwoRah9FJTRI5X0ECZWkKy55lD4wDc5xpiu-gjoq4a2Tgvman6PrqXebhs9dyKPZDLvUl0nD6koyVTFGi4tNLpeGnFOIZpuazqYvQ8H80DITLVNomQMtsy8hPoVyMffvIf1V_5P6Bgz7bN8</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kok, Mustafa Versan</creator><creator>Bal, Berk</creator><creator>Varfolomeev, Mikhail A.</creator><creator>Nurgaliev, Danis K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1180-5862</orcidid></search><sort><creationdate>20230901</creationdate><title>Thermal characteristics and model-free kinetics of oil shale samples</title><author>Kok, Mustafa Versan ; Bal, Berk ; Varfolomeev, Mikhail A. ; Nurgaliev, Danis K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-45a02756dbef08df5459067ddf060461b363f6de290cc32943b08f75dac652d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Analytical Chemistry</topic><topic>Atmospheric models</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Combustion</topic><topic>Decomposition</topic><topic>Decomposition reactions</topic><topic>Energy value</topic><topic>Heat treating</topic><topic>Inorganic Chemistry</topic><topic>Intervals</topic><topic>Kinetics</topic><topic>Measurement Science and Instrumentation</topic><topic>Oil shale</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kok, Mustafa Versan</creatorcontrib><creatorcontrib>Bal, Berk</creatorcontrib><creatorcontrib>Varfolomeev, Mikhail A.</creatorcontrib><creatorcontrib>Nurgaliev, Danis K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kok, Mustafa Versan</au><au>Bal, Berk</au><au>Varfolomeev, Mikhail A.</au><au>Nurgaliev, Danis K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal characteristics and model-free kinetics of oil shale samples</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>148</volume><issue>17</issue><spage>8933</spage><epage>8943</epage><pages>8933-8943</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This research investigates the non-isothermal thermogravimetric analysis and kinetics of oil shale samples at different heating rates and in the air atmosphere. In all the oil shale samples studied, the TG-DTG curves indicated that the decomposition of oil shale samples followed two successive reaction stages in different temperature intervals, known as combustion and mineral decomposition. This stage determines reaction intervals, peak temperature, mass loss, and derivative mass loss rate values of oil shale samples. At the same time, the different combustibility indices such as the ignition index, combustion index, and reactivity of oil shale samples are also determined. Also, for each reaction region, activation energy values were calculated using four different model-free methods known as Kissinger—Akahira—Sunose, Ozawa—Flynn—Wall, starink, and distributed activation energy model. In combustion and mineral decomposition regions, the activation energy values varied between 122.9–162.5 kJ mol −1 and 169.9–264.2 kJ mol −1 , respectively. At the same time, kinetic models were validated by comparing the experimental and simulated conversion curves.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-023-12307-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1180-5862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2023-09, Vol.148 (17), p.8933-8943
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2846274221
source Springer Online Journals Complete
subjects Activation energy
Analytical Chemistry
Atmospheric models
Chemistry
Chemistry and Materials Science
Combustion
Decomposition
Decomposition reactions
Energy value
Heat treating
Inorganic Chemistry
Intervals
Kinetics
Measurement Science and Instrumentation
Oil shale
Physical Chemistry
Polymer Sciences
Thermogravimetric analysis
title Thermal characteristics and model-free kinetics of oil shale samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A44%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20characteristics%20and%20model-free%20kinetics%20of%20oil%20shale%20samples&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Kok,%20Mustafa%20Versan&rft.date=2023-09-01&rft.volume=148&rft.issue=17&rft.spage=8933&rft.epage=8943&rft.pages=8933-8943&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-023-12307-w&rft_dat=%3Cproquest_cross%3E2846274221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846274221&rft_id=info:pmid/&rfr_iscdi=true