Numerical investigation of electrohydrodynamic conduction with a temperature gradient
In this work, we present a numerical investigation of the effect of a temperature gradient on the flow characteristics of electrohydrodynamic (EHD) conduction phenomenon. The influence of temperature on the physical properties of dielectric liquids together with the dielectric force has been investi...
Gespeichert in:
Veröffentlicht in: | Acta mechanica Sinica 2023-11, Vol.39 (11), Article 222479 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Acta mechanica Sinica |
container_volume | 39 |
creator | Du, Zhonglin Vázquez, Pedro A. Wu, Jian |
description | In this work, we present a numerical investigation of the effect of a temperature gradient on the flow characteristics of electrohydrodynamic (EHD) conduction phenomenon. The influence of temperature on the physical properties of dielectric liquids together with the dielectric force has been investigated by a dimensional simulation. To better identify the influence of different forces, a 2D asymmetric parallel electrode configuration with a temperature gradient has been considered. The effect of the dielectric force on the flow pattern and strength of EHD conduction mechanism has been investigated. In order to do this, we vary the dielectric force acting on the flow field by increasing the applied electric field strength and temperature gradient. In the process, we also discuss the effect of the dielectric force direction on the flow field. It is found that the presence of the dielectric force significantly modifies the flow pattern and strength of the system compared to the case of the Coulomb force alone in the flow field. As the applied electric field strength and temperature gradient increase, the effect of the dielectric force on the flow characteristics of EHD conduction mechanism increases. |
doi_str_mv | 10.1007/s10409-023-22479-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846272899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846272899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4ffc5e091dba15e7c8d2a6a83f81df1fad7e1e74c6c873747231275e497e4b963</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMRv8bMdORlTxJVWw0NlynZfWVRMXO4H23xMaJDamt5x779Mh5BrYLTCm7xIwyUrKuKCcS13S_QmZgAJJBYA6JROWK021huKcXKS0YUwo0DAhi9e-weid3Wa-_cTU-ZXtfGizUGe4RdfFsD5UMVSH1jbeZS60Ve-OxJfv1pnNOmx2GG3XR8xW0VYe2-6SnNV2m_Dq907J4vHhffZM529PL7P7OXUCyo7KunY5shKqpYUctSsqbpUtRF1AVUNtK42AWjrlCi201FwA1znKUqNclkpMyc3Yu4vhox--N5vQx3aYNLyQimtelOVA8ZFyMaQUsTa76BsbDwaY-dFnRn1m0GeO-sx-CIkxlAa4XWH8q_4n9Q0mIHVe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846272899</pqid></control><display><type>article</type><title>Numerical investigation of electrohydrodynamic conduction with a temperature gradient</title><source>SpringerLink Journals</source><creator>Du, Zhonglin ; Vázquez, Pedro A. ; Wu, Jian</creator><creatorcontrib>Du, Zhonglin ; Vázquez, Pedro A. ; Wu, Jian</creatorcontrib><description>In this work, we present a numerical investigation of the effect of a temperature gradient on the flow characteristics of electrohydrodynamic (EHD) conduction phenomenon. The influence of temperature on the physical properties of dielectric liquids together with the dielectric force has been investigated by a dimensional simulation. To better identify the influence of different forces, a 2D asymmetric parallel electrode configuration with a temperature gradient has been considered. The effect of the dielectric force on the flow pattern and strength of EHD conduction mechanism has been investigated. In order to do this, we vary the dielectric force acting on the flow field by increasing the applied electric field strength and temperature gradient. In the process, we also discuss the effect of the dielectric force direction on the flow field. It is found that the presence of the dielectric force significantly modifies the flow pattern and strength of the system compared to the case of the Coulomb force alone in the flow field. As the applied electric field strength and temperature gradient increase, the effect of the dielectric force on the flow characteristics of EHD conduction mechanism increases.</description><edition>English ed.</edition><identifier>ISSN: 0567-7718</identifier><identifier>EISSN: 1614-3116</identifier><identifier>DOI: 10.1007/s10409-023-22479-x</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</publisher><subject>Classical and Continuum Physics ; Computational Intelligence ; Dielectric strength ; Electric field strength ; Electric fields ; Electrohydrodynamics ; Engineering ; Engineering Fluid Dynamics ; Flow characteristics ; Flow distribution ; Investigations ; Numerical analysis ; Physical properties ; Research Paper ; Theoretical and Applied Mechanics</subject><ispartof>Acta mechanica Sinica, 2023-11, Vol.39 (11), Article 222479</ispartof><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4ffc5e091dba15e7c8d2a6a83f81df1fad7e1e74c6c873747231275e497e4b963</citedby><cites>FETCH-LOGICAL-c319t-4ffc5e091dba15e7c8d2a6a83f81df1fad7e1e74c6c873747231275e497e4b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10409-023-22479-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10409-023-22479-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Du, Zhonglin</creatorcontrib><creatorcontrib>Vázquez, Pedro A.</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><title>Numerical investigation of electrohydrodynamic conduction with a temperature gradient</title><title>Acta mechanica Sinica</title><addtitle>Acta Mech. Sin</addtitle><description>In this work, we present a numerical investigation of the effect of a temperature gradient on the flow characteristics of electrohydrodynamic (EHD) conduction phenomenon. The influence of temperature on the physical properties of dielectric liquids together with the dielectric force has been investigated by a dimensional simulation. To better identify the influence of different forces, a 2D asymmetric parallel electrode configuration with a temperature gradient has been considered. The effect of the dielectric force on the flow pattern and strength of EHD conduction mechanism has been investigated. In order to do this, we vary the dielectric force acting on the flow field by increasing the applied electric field strength and temperature gradient. In the process, we also discuss the effect of the dielectric force direction on the flow field. It is found that the presence of the dielectric force significantly modifies the flow pattern and strength of the system compared to the case of the Coulomb force alone in the flow field. As the applied electric field strength and temperature gradient increase, the effect of the dielectric force on the flow characteristics of EHD conduction mechanism increases.</description><subject>Classical and Continuum Physics</subject><subject>Computational Intelligence</subject><subject>Dielectric strength</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Electrohydrodynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Flow characteristics</subject><subject>Flow distribution</subject><subject>Investigations</subject><subject>Numerical analysis</subject><subject>Physical properties</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>0567-7718</issn><issn>1614-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMRv8bMdORlTxJVWw0NlynZfWVRMXO4H23xMaJDamt5x779Mh5BrYLTCm7xIwyUrKuKCcS13S_QmZgAJJBYA6JROWK021huKcXKS0YUwo0DAhi9e-weid3Wa-_cTU-ZXtfGizUGe4RdfFsD5UMVSH1jbeZS60Ve-OxJfv1pnNOmx2GG3XR8xW0VYe2-6SnNV2m_Dq907J4vHhffZM529PL7P7OXUCyo7KunY5shKqpYUctSsqbpUtRF1AVUNtK42AWjrlCi201FwA1znKUqNclkpMyc3Yu4vhox--N5vQx3aYNLyQimtelOVA8ZFyMaQUsTa76BsbDwaY-dFnRn1m0GeO-sx-CIkxlAa4XWH8q_4n9Q0mIHVe</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Du, Zhonglin</creator><creator>Vázquez, Pedro A.</creator><creator>Wu, Jian</creator><general>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Numerical investigation of electrohydrodynamic conduction with a temperature gradient</title><author>Du, Zhonglin ; Vázquez, Pedro A. ; Wu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4ffc5e091dba15e7c8d2a6a83f81df1fad7e1e74c6c873747231275e497e4b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Continuum Physics</topic><topic>Computational Intelligence</topic><topic>Dielectric strength</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Electrohydrodynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Flow characteristics</topic><topic>Flow distribution</topic><topic>Investigations</topic><topic>Numerical analysis</topic><topic>Physical properties</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Zhonglin</creatorcontrib><creatorcontrib>Vázquez, Pedro A.</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mechanica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Zhonglin</au><au>Vázquez, Pedro A.</au><au>Wu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation of electrohydrodynamic conduction with a temperature gradient</atitle><jtitle>Acta mechanica Sinica</jtitle><stitle>Acta Mech. Sin</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>39</volume><issue>11</issue><artnum>222479</artnum><issn>0567-7718</issn><eissn>1614-3116</eissn><abstract>In this work, we present a numerical investigation of the effect of a temperature gradient on the flow characteristics of electrohydrodynamic (EHD) conduction phenomenon. The influence of temperature on the physical properties of dielectric liquids together with the dielectric force has been investigated by a dimensional simulation. To better identify the influence of different forces, a 2D asymmetric parallel electrode configuration with a temperature gradient has been considered. The effect of the dielectric force on the flow pattern and strength of EHD conduction mechanism has been investigated. In order to do this, we vary the dielectric force acting on the flow field by increasing the applied electric field strength and temperature gradient. In the process, we also discuss the effect of the dielectric force direction on the flow field. It is found that the presence of the dielectric force significantly modifies the flow pattern and strength of the system compared to the case of the Coulomb force alone in the flow field. As the applied electric field strength and temperature gradient increase, the effect of the dielectric force on the flow characteristics of EHD conduction mechanism increases.</abstract><cop>Beijing</cop><pub>The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences</pub><doi>10.1007/s10409-023-22479-x</doi><edition>English ed.</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0567-7718 |
ispartof | Acta mechanica Sinica, 2023-11, Vol.39 (11), Article 222479 |
issn | 0567-7718 1614-3116 |
language | eng |
recordid | cdi_proquest_journals_2846272899 |
source | SpringerLink Journals |
subjects | Classical and Continuum Physics Computational Intelligence Dielectric strength Electric field strength Electric fields Electrohydrodynamics Engineering Engineering Fluid Dynamics Flow characteristics Flow distribution Investigations Numerical analysis Physical properties Research Paper Theoretical and Applied Mechanics |
title | Numerical investigation of electrohydrodynamic conduction with a temperature gradient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20of%20electrohydrodynamic%20conduction%20with%20a%20temperature%20gradient&rft.jtitle=Acta%20mechanica%20Sinica&rft.au=Du,%20Zhonglin&rft.date=2023-11-01&rft.volume=39&rft.issue=11&rft.artnum=222479&rft.issn=0567-7718&rft.eissn=1614-3116&rft_id=info:doi/10.1007/s10409-023-22479-x&rft_dat=%3Cproquest_cross%3E2846272899%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846272899&rft_id=info:pmid/&rfr_iscdi=true |