Chemisorption solid materials for hydrogen storage near ambient temperature: a review

Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in Energy 2023, Vol.17 (1), p.72-101
Hauptverfasser: ZHANG, Yiheng, WU, Shaofei, WANG, Liwei, ZHANG, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 72
container_title Frontiers in Energy
container_volume 17
creator ZHANG, Yiheng
WU, Shaofei
WANG, Liwei
ZHANG, Xuefeng
description Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.
doi_str_mv 10.1007/s11708-022-0835-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2846272866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846272866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6ddb51a75e1ccfc6dd50b692a1bffa7c8fde6e87c21eb1375ae299e20e87c1983</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEElXpB7CzxDowdprYYYcqXhISG7q2nGSSumriMHZB_XtcBcSuq3ndc0e6SXLN4ZYDyDvPuQSVghApqCxP5VkyE1DmKS9Kdf7XS-CXycL7LQBwDjlIMUvWqw321jsag3UD825nG9abgGTNzrPWEdscGnIdxmNwZDpkAxpipq8sDoEF7EckE_aE98wwwi-L31fJRRtxXPzWebJ-evxYvaRv78-vq4e3tM7KLKRF01Q5NzJHXtdtHcccqqIUhldta2St2gYLVLIWHCueydygKEsUcNzxUmXz5GbyHcl97tEHvXV7GuJLLdSyEFKoojitgnyppJQQVXxS1eS8J2z1SLY3dNAc9DFmPcWsY8z6GLOWkRET46N26JD-nU9BaoI2ttsgYTMSeq9bckOwSKfQH2WtkoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805487770</pqid></control><display><type>article</type><title>Chemisorption solid materials for hydrogen storage near ambient temperature: a review</title><source>SpringerLink Journals - AutoHoldings</source><creator>ZHANG, Yiheng ; WU, Shaofei ; WANG, Liwei ; ZHANG, Xuefeng</creator><creatorcontrib>ZHANG, Yiheng ; WU, Shaofei ; WANG, Liwei ; ZHANG, Xuefeng</creatorcontrib><description>Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-022-0835-7</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>alloy hydrides ; Ambient temperature ; Carbon dioxide ; Carbon dioxide emissions ; Chemisorption ; Emissions control ; Energy ; Energy Systems ; Fuel cells ; Hydrogen ; hydrogen storage capacity ; Hydrogen storage materials ; Mechanical properties ; Metals ; modification methods ; near-ambient-temperature ; Reprocessing ; Review Article ; Sorption ; Storage systems</subject><ispartof>Frontiers in Energy, 2023, Vol.17 (1), p.72-101</ispartof><rights>Copyright reserved, 2022, Higher Education Press 2022</rights><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6ddb51a75e1ccfc6dd50b692a1bffa7c8fde6e87c21eb1375ae299e20e87c1983</citedby><cites>FETCH-LOGICAL-c393t-6ddb51a75e1ccfc6dd50b692a1bffa7c8fde6e87c21eb1375ae299e20e87c1983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11708-022-0835-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11708-022-0835-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>ZHANG, Yiheng</creatorcontrib><creatorcontrib>WU, Shaofei</creatorcontrib><creatorcontrib>WANG, Liwei</creatorcontrib><creatorcontrib>ZHANG, Xuefeng</creatorcontrib><title>Chemisorption solid materials for hydrogen storage near ambient temperature: a review</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><description>Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.</description><subject>alloy hydrides</subject><subject>Ambient temperature</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Chemisorption</subject><subject>Emissions control</subject><subject>Energy</subject><subject>Energy Systems</subject><subject>Fuel cells</subject><subject>Hydrogen</subject><subject>hydrogen storage capacity</subject><subject>Hydrogen storage materials</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>modification methods</subject><subject>near-ambient-temperature</subject><subject>Reprocessing</subject><subject>Review Article</subject><subject>Sorption</subject><subject>Storage systems</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEElXpB7CzxDowdprYYYcqXhISG7q2nGSSumriMHZB_XtcBcSuq3ndc0e6SXLN4ZYDyDvPuQSVghApqCxP5VkyE1DmKS9Kdf7XS-CXycL7LQBwDjlIMUvWqw321jsag3UD825nG9abgGTNzrPWEdscGnIdxmNwZDpkAxpipq8sDoEF7EckE_aE98wwwi-L31fJRRtxXPzWebJ-evxYvaRv78-vq4e3tM7KLKRF01Q5NzJHXtdtHcccqqIUhldta2St2gYLVLIWHCueydygKEsUcNzxUmXz5GbyHcl97tEHvXV7GuJLLdSyEFKoojitgnyppJQQVXxS1eS8J2z1SLY3dNAc9DFmPcWsY8z6GLOWkRET46N26JD-nU9BaoI2ttsgYTMSeq9bckOwSKfQH2WtkoM</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>ZHANG, Yiheng</creator><creator>WU, Shaofei</creator><creator>WANG, Liwei</creator><creator>ZHANG, Xuefeng</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2023</creationdate><title>Chemisorption solid materials for hydrogen storage near ambient temperature: a review</title><author>ZHANG, Yiheng ; WU, Shaofei ; WANG, Liwei ; ZHANG, Xuefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6ddb51a75e1ccfc6dd50b692a1bffa7c8fde6e87c21eb1375ae299e20e87c1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alloy hydrides</topic><topic>Ambient temperature</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Chemisorption</topic><topic>Emissions control</topic><topic>Energy</topic><topic>Energy Systems</topic><topic>Fuel cells</topic><topic>Hydrogen</topic><topic>hydrogen storage capacity</topic><topic>Hydrogen storage materials</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>modification methods</topic><topic>near-ambient-temperature</topic><topic>Reprocessing</topic><topic>Review Article</topic><topic>Sorption</topic><topic>Storage systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Yiheng</creatorcontrib><creatorcontrib>WU, Shaofei</creatorcontrib><creatorcontrib>WANG, Liwei</creatorcontrib><creatorcontrib>ZHANG, Xuefeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Yiheng</au><au>WU, Shaofei</au><au>WANG, Liwei</au><au>ZHANG, Xuefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemisorption solid materials for hydrogen storage near ambient temperature: a review</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><date>2023</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>72</spage><epage>101</epage><pages>72-101</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>Solid chemisorption technologies for hydrogen storage, especially high-efficiency hydrogen storage of fuel cells in near ambient temperature zone defined from − 20 to 100°C, have a great application potential for realizing the global goal of carbon dioxide emission reduction and vision of carbon neutrality. However, there are several challenges to be solved at near ambient temperature, i.e., unclear hydrogen storage mechanism, low sorption capacity, poor sorption kinetics, and complicated synthetic procedures. In this review, the characteristics and modification methods of chemisorption hydrogen storage materials at near ambient temperature are discussed. The interaction between hydrogen and materials is analyzed, including the microscopic, thermodynamic, and mechanical properties. Based on the classification of hydrogen storage metals, the operation temperature zone and temperature shifting methods are discussed. A series of modification and reprocessing methods are summarized, including preparation, synthesis, simulation, and experimental analysis. Finally, perspectives on advanced solid chemisorption materials promising for efficient and scalable hydrogen storage systems are provided.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-022-0835-7</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-1701
ispartof Frontiers in Energy, 2023, Vol.17 (1), p.72-101
issn 2095-1701
2095-1698
language eng
recordid cdi_proquest_journals_2846272866
source SpringerLink Journals - AutoHoldings
subjects alloy hydrides
Ambient temperature
Carbon dioxide
Carbon dioxide emissions
Chemisorption
Emissions control
Energy
Energy Systems
Fuel cells
Hydrogen
hydrogen storage capacity
Hydrogen storage materials
Mechanical properties
Metals
modification methods
near-ambient-temperature
Reprocessing
Review Article
Sorption
Storage systems
title Chemisorption solid materials for hydrogen storage near ambient temperature: a review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemisorption%20solid%20materials%20for%20hydrogen%20storage%20near%20ambient%20temperature:%20a%20review&rft.jtitle=Frontiers%20in%20Energy&rft.au=ZHANG,%20Yiheng&rft.date=2023&rft.volume=17&rft.issue=1&rft.spage=72&rft.epage=101&rft.pages=72-101&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-022-0835-7&rft_dat=%3Cproquest_cross%3E2846272866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2805487770&rft_id=info:pmid/&rfr_iscdi=true