Counterfactual Generation Framework for Few-Shot Learning

Few-shot learning (FSL) that aims to recognize novel classes with few labeled samples is troubled by its data scarcity. Though recent works tackle FSL with data augmentation-based methods, these models fail to maintain the discrimination and diversity of the generated samples due to the distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2023-08, Vol.33 (8), p.1-1
Hauptverfasser: Dang, Zhuohang, Luo, Minnan, Jia, Chengyou, Yan, Caixia, Chang, Xiaojun, Zheng, Qinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE transactions on circuits and systems for video technology
container_volume 33
creator Dang, Zhuohang
Luo, Minnan
Jia, Chengyou
Yan, Caixia
Chang, Xiaojun
Zheng, Qinghua
description Few-shot learning (FSL) that aims to recognize novel classes with few labeled samples is troubled by its data scarcity. Though recent works tackle FSL with data augmentation-based methods, these models fail to maintain the discrimination and diversity of the generated samples due to the distribution shift and intra-class bias caused by the data scarcity, therefore greatly undermining the performance. To this end, we use causal mechanisms, which are constant among independent variables across data distribution, to alleviate such effects. In this sense, we decompose the image information into two independent components: sample-specific and class-agnostic information, and further propose a novel Counterfactual Generation Framework (CGF) to learn the underlying causal mechanisms to synthesize faithful samples for FSL. Specifically, based on the counterfactual inference, we design a class-agnostic feature extractor to capture the sample-specific information, together with a counterfactual generation network to simulate the data generation process from a causal perspective. Moreover, to leverage the power of CGF in counterfactual inference, we further develop a novel classifier that classifies samples based on their distributions of counterfactual generations. Extensive experiments demonstrate the effectiveness of CGF on four FSL benchmarks, e.g ., 80.12/86.13% accuracy on 5-way 1/5-shot miniImageNet FSL tasks, significantly improving the performance. Our codes and models are available at https://github.com/eric-hang/CGF.
doi_str_mv 10.1109/TCSVT.2023.3241651
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2845762088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10035001</ieee_id><sourcerecordid>2845762088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-7ddfb36d056e553006e94307bb529c0086497b06e999028ec3669b25b74ee8533</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6d_ZjN7lGCrULBQ6vXZZNONLXN1k1C8d-b2h48zcvwPjPwMHbLYcI52IdlvnhfTgQIOZFCcY38jI04okmFADwfMiBPjeB4ya7adg3AlVHZiNk89E1HsfJl1_tNMqOGou_q0CTT6Le0D_ErqUJMprRPF5-hS-bkY1M3H9fsovKblm5Oc8zepk_L_Dmdv85e8sd5WgqruzRbrapC6hWgJkQJoMkqCVlRoLAlgNHKZsVhay0IQ6XU2hYCi0wRGZRyzO6Pd3cxfPfUdm4d-tgML50wCjMtwJihJY6tMoa2jVS5Xay3Pv44Du6gyP0pcgdF7qRogO6OUE1E_wCQOAiSvwN3YMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845762088</pqid></control><display><type>article</type><title>Counterfactual Generation Framework for Few-Shot Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Dang, Zhuohang ; Luo, Minnan ; Jia, Chengyou ; Yan, Caixia ; Chang, Xiaojun ; Zheng, Qinghua</creator><creatorcontrib>Dang, Zhuohang ; Luo, Minnan ; Jia, Chengyou ; Yan, Caixia ; Chang, Xiaojun ; Zheng, Qinghua</creatorcontrib><description>Few-shot learning (FSL) that aims to recognize novel classes with few labeled samples is troubled by its data scarcity. Though recent works tackle FSL with data augmentation-based methods, these models fail to maintain the discrimination and diversity of the generated samples due to the distribution shift and intra-class bias caused by the data scarcity, therefore greatly undermining the performance. To this end, we use causal mechanisms, which are constant among independent variables across data distribution, to alleviate such effects. In this sense, we decompose the image information into two independent components: sample-specific and class-agnostic information, and further propose a novel Counterfactual Generation Framework (CGF) to learn the underlying causal mechanisms to synthesize faithful samples for FSL. Specifically, based on the counterfactual inference, we design a class-agnostic feature extractor to capture the sample-specific information, together with a counterfactual generation network to simulate the data generation process from a causal perspective. Moreover, to leverage the power of CGF in counterfactual inference, we further develop a novel classifier that classifies samples based on their distributions of counterfactual generations. Extensive experiments demonstrate the effectiveness of CGF on four FSL benchmarks, e.g ., 80.12/86.13% accuracy on 5-way 1/5-shot miniImageNet FSL tasks, significantly improving the performance. Our codes and models are available at https://github.com/eric-hang/CGF.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2023.3241651</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>counterfactual inference ; Data augmentation ; Data mining ; Data models ; Feature extraction ; few-shot learning ; Generators ; Independent variables ; Inference ; Learning ; prototype learning ; Prototypes ; Semantics ; Task analysis</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-08, Vol.33 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-7ddfb36d056e553006e94307bb529c0086497b06e999028ec3669b25b74ee8533</citedby><cites>FETCH-LOGICAL-c296t-7ddfb36d056e553006e94307bb529c0086497b06e999028ec3669b25b74ee8533</cites><orcidid>0000-0002-0140-7860 ; 0000-0002-7778-8807 ; 0000-0003-2595-0398 ; 0000-0002-3775-3722 ; 0000-0001-6921-0303</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10035001$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10035001$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dang, Zhuohang</creatorcontrib><creatorcontrib>Luo, Minnan</creatorcontrib><creatorcontrib>Jia, Chengyou</creatorcontrib><creatorcontrib>Yan, Caixia</creatorcontrib><creatorcontrib>Chang, Xiaojun</creatorcontrib><creatorcontrib>Zheng, Qinghua</creatorcontrib><title>Counterfactual Generation Framework for Few-Shot Learning</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Few-shot learning (FSL) that aims to recognize novel classes with few labeled samples is troubled by its data scarcity. Though recent works tackle FSL with data augmentation-based methods, these models fail to maintain the discrimination and diversity of the generated samples due to the distribution shift and intra-class bias caused by the data scarcity, therefore greatly undermining the performance. To this end, we use causal mechanisms, which are constant among independent variables across data distribution, to alleviate such effects. In this sense, we decompose the image information into two independent components: sample-specific and class-agnostic information, and further propose a novel Counterfactual Generation Framework (CGF) to learn the underlying causal mechanisms to synthesize faithful samples for FSL. Specifically, based on the counterfactual inference, we design a class-agnostic feature extractor to capture the sample-specific information, together with a counterfactual generation network to simulate the data generation process from a causal perspective. Moreover, to leverage the power of CGF in counterfactual inference, we further develop a novel classifier that classifies samples based on their distributions of counterfactual generations. Extensive experiments demonstrate the effectiveness of CGF on four FSL benchmarks, e.g ., 80.12/86.13% accuracy on 5-way 1/5-shot miniImageNet FSL tasks, significantly improving the performance. Our codes and models are available at https://github.com/eric-hang/CGF.</description><subject>counterfactual inference</subject><subject>Data augmentation</subject><subject>Data mining</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>few-shot learning</subject><subject>Generators</subject><subject>Independent variables</subject><subject>Inference</subject><subject>Learning</subject><subject>prototype learning</subject><subject>Prototypes</subject><subject>Semantics</subject><subject>Task analysis</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gHgIeE6d_ZjN7lGCrULBQ6vXZZNONLXN1k1C8d-b2h48zcvwPjPwMHbLYcI52IdlvnhfTgQIOZFCcY38jI04okmFADwfMiBPjeB4ya7adg3AlVHZiNk89E1HsfJl1_tNMqOGou_q0CTT6Le0D_ErqUJMprRPF5-hS-bkY1M3H9fsovKblm5Oc8zepk_L_Dmdv85e8sd5WgqruzRbrapC6hWgJkQJoMkqCVlRoLAlgNHKZsVhay0IQ6XU2hYCi0wRGZRyzO6Pd3cxfPfUdm4d-tgML50wCjMtwJihJY6tMoa2jVS5Xay3Pv44Du6gyP0pcgdF7qRogO6OUE1E_wCQOAiSvwN3YMU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Dang, Zhuohang</creator><creator>Luo, Minnan</creator><creator>Jia, Chengyou</creator><creator>Yan, Caixia</creator><creator>Chang, Xiaojun</creator><creator>Zheng, Qinghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0140-7860</orcidid><orcidid>https://orcid.org/0000-0002-7778-8807</orcidid><orcidid>https://orcid.org/0000-0003-2595-0398</orcidid><orcidid>https://orcid.org/0000-0002-3775-3722</orcidid><orcidid>https://orcid.org/0000-0001-6921-0303</orcidid></search><sort><creationdate>20230801</creationdate><title>Counterfactual Generation Framework for Few-Shot Learning</title><author>Dang, Zhuohang ; Luo, Minnan ; Jia, Chengyou ; Yan, Caixia ; Chang, Xiaojun ; Zheng, Qinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-7ddfb36d056e553006e94307bb529c0086497b06e999028ec3669b25b74ee8533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>counterfactual inference</topic><topic>Data augmentation</topic><topic>Data mining</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>few-shot learning</topic><topic>Generators</topic><topic>Independent variables</topic><topic>Inference</topic><topic>Learning</topic><topic>prototype learning</topic><topic>Prototypes</topic><topic>Semantics</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Zhuohang</creatorcontrib><creatorcontrib>Luo, Minnan</creatorcontrib><creatorcontrib>Jia, Chengyou</creatorcontrib><creatorcontrib>Yan, Caixia</creatorcontrib><creatorcontrib>Chang, Xiaojun</creatorcontrib><creatorcontrib>Zheng, Qinghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dang, Zhuohang</au><au>Luo, Minnan</au><au>Jia, Chengyou</au><au>Yan, Caixia</au><au>Chang, Xiaojun</au><au>Zheng, Qinghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counterfactual Generation Framework for Few-Shot Learning</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>33</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Few-shot learning (FSL) that aims to recognize novel classes with few labeled samples is troubled by its data scarcity. Though recent works tackle FSL with data augmentation-based methods, these models fail to maintain the discrimination and diversity of the generated samples due to the distribution shift and intra-class bias caused by the data scarcity, therefore greatly undermining the performance. To this end, we use causal mechanisms, which are constant among independent variables across data distribution, to alleviate such effects. In this sense, we decompose the image information into two independent components: sample-specific and class-agnostic information, and further propose a novel Counterfactual Generation Framework (CGF) to learn the underlying causal mechanisms to synthesize faithful samples for FSL. Specifically, based on the counterfactual inference, we design a class-agnostic feature extractor to capture the sample-specific information, together with a counterfactual generation network to simulate the data generation process from a causal perspective. Moreover, to leverage the power of CGF in counterfactual inference, we further develop a novel classifier that classifies samples based on their distributions of counterfactual generations. Extensive experiments demonstrate the effectiveness of CGF on four FSL benchmarks, e.g ., 80.12/86.13% accuracy on 5-way 1/5-shot miniImageNet FSL tasks, significantly improving the performance. Our codes and models are available at https://github.com/eric-hang/CGF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2023.3241651</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0140-7860</orcidid><orcidid>https://orcid.org/0000-0002-7778-8807</orcidid><orcidid>https://orcid.org/0000-0003-2595-0398</orcidid><orcidid>https://orcid.org/0000-0002-3775-3722</orcidid><orcidid>https://orcid.org/0000-0001-6921-0303</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2023-08, Vol.33 (8), p.1-1
issn 1051-8215
1558-2205
language eng
recordid cdi_proquest_journals_2845762088
source IEEE Electronic Library (IEL)
subjects counterfactual inference
Data augmentation
Data mining
Data models
Feature extraction
few-shot learning
Generators
Independent variables
Inference
Learning
prototype learning
Prototypes
Semantics
Task analysis
title Counterfactual Generation Framework for Few-Shot Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counterfactual%20Generation%20Framework%20for%20Few-Shot%20Learning&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Dang,%20Zhuohang&rft.date=2023-08-01&rft.volume=33&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2023.3241651&rft_dat=%3Cproquest_RIE%3E2845762088%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845762088&rft_id=info:pmid/&rft_ieee_id=10035001&rfr_iscdi=true