Semi-intrusive approach for stiffness and strength topology optimization under uncertainty

A semi-intrusive approach for robust design optimization is presented. The stochastic moments of the objective function and constraints are estimated using a Taylor series-based approach, which requires derivatives with respect to design variables, random variables as well as mixed derivatives. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization and engineering 2023-09, Vol.24 (3), p.2181-2211
Hauptverfasser: Steltner, Kai, Pedersen, Claus B. W., Kriegesmann, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2211
container_issue 3
container_start_page 2181
container_title Optimization and engineering
container_volume 24
creator Steltner, Kai
Pedersen, Claus B. W.
Kriegesmann, Benedikt
description A semi-intrusive approach for robust design optimization is presented. The stochastic moments of the objective function and constraints are estimated using a Taylor series-based approach, which requires derivatives with respect to design variables, random variables as well as mixed derivatives. The required derivatives with respect to design variables are determined using the intrusive adjoint method available in commercial software. The partial derivatives with respect to random parameters as well as the mixed second derivatives are approximated non-intrusively using finite differences. The presented approach provides a semi-intrusive procedure for robust design optimization at reasonable computational cost while allowing an arbitrary choice of random parameters. The approach is implemented as an add-on for commercial software. The method and its limitations are demonstrated by academic test cases and industrial applications.
doi_str_mv 10.1007/s11081-022-09770-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845639767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845639767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2599570bde291f4afe711f1de9fb3c91cf69df5c67070029c133cc5ebfcb4dd13</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62gek8lkKcUXFFyoGzchk0nalDYZk4zQ_nqjI7hzcx9wzrmXD4BLjK4xQvwmYYxaDBEhEAnOETwcgRlmnEIiSH1cZtoKWNcEnYKzlDYI4YaRdgbeX8zOQedzHJP7NJUahhiUXlc2xCplZ603KVXK92WLxq_yusphCNuw2ldhyG7nDiq74KvR9yaWqk3MqgTuz8GJVdtkLn77HLzd370uHuHy-eFpcbuEmjY0Q8KEYBx1vSEC21pZwzG2uDfCdlQLrG0jest0wxFHiAiNKdWamc7qru57TOfgasotn3-MJmW5CWP05aQkbc0aKnjDi4pMKh1DStFYOUS3U3EvMZLfDOXEUBaG8oehPBQTnUypiP3KxL_of1xfKoF34A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845639767</pqid></control><display><type>article</type><title>Semi-intrusive approach for stiffness and strength topology optimization under uncertainty</title><source>SpringerLink Journals - AutoHoldings</source><creator>Steltner, Kai ; Pedersen, Claus B. W. ; Kriegesmann, Benedikt</creator><creatorcontrib>Steltner, Kai ; Pedersen, Claus B. W. ; Kriegesmann, Benedikt</creatorcontrib><description>A semi-intrusive approach for robust design optimization is presented. The stochastic moments of the objective function and constraints are estimated using a Taylor series-based approach, which requires derivatives with respect to design variables, random variables as well as mixed derivatives. The required derivatives with respect to design variables are determined using the intrusive adjoint method available in commercial software. The partial derivatives with respect to random parameters as well as the mixed second derivatives are approximated non-intrusively using finite differences. The presented approach provides a semi-intrusive procedure for robust design optimization at reasonable computational cost while allowing an arbitrary choice of random parameters. The approach is implemented as an add-on for commercial software. The method and its limitations are demonstrated by academic test cases and industrial applications.</description><identifier>ISSN: 1389-4420</identifier><identifier>EISSN: 1573-2924</identifier><identifier>DOI: 10.1007/s11081-022-09770-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Control ; Design optimization ; Engineering ; Environmental Management ; Financial Engineering ; Industrial applications ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Parameters ; Random variables ; Research Article ; Robust design ; Software ; Systems Theory ; Taylor series ; Topology optimization</subject><ispartof>Optimization and engineering, 2023-09, Vol.24 (3), p.2181-2211</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2599570bde291f4afe711f1de9fb3c91cf69df5c67070029c133cc5ebfcb4dd13</citedby><cites>FETCH-LOGICAL-c363t-2599570bde291f4afe711f1de9fb3c91cf69df5c67070029c133cc5ebfcb4dd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11081-022-09770-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11081-022-09770-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Steltner, Kai</creatorcontrib><creatorcontrib>Pedersen, Claus B. W.</creatorcontrib><creatorcontrib>Kriegesmann, Benedikt</creatorcontrib><title>Semi-intrusive approach for stiffness and strength topology optimization under uncertainty</title><title>Optimization and engineering</title><addtitle>Optim Eng</addtitle><description>A semi-intrusive approach for robust design optimization is presented. The stochastic moments of the objective function and constraints are estimated using a Taylor series-based approach, which requires derivatives with respect to design variables, random variables as well as mixed derivatives. The required derivatives with respect to design variables are determined using the intrusive adjoint method available in commercial software. The partial derivatives with respect to random parameters as well as the mixed second derivatives are approximated non-intrusively using finite differences. The presented approach provides a semi-intrusive procedure for robust design optimization at reasonable computational cost while allowing an arbitrary choice of random parameters. The approach is implemented as an add-on for commercial software. The method and its limitations are demonstrated by academic test cases and industrial applications.</description><subject>Control</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Financial Engineering</subject><subject>Industrial applications</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Random variables</subject><subject>Research Article</subject><subject>Robust design</subject><subject>Software</subject><subject>Systems Theory</subject><subject>Taylor series</subject><subject>Topology optimization</subject><issn>1389-4420</issn><issn>1573-2924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62gek8lkKcUXFFyoGzchk0nalDYZk4zQ_nqjI7hzcx9wzrmXD4BLjK4xQvwmYYxaDBEhEAnOETwcgRlmnEIiSH1cZtoKWNcEnYKzlDYI4YaRdgbeX8zOQedzHJP7NJUahhiUXlc2xCplZ603KVXK92WLxq_yusphCNuw2ldhyG7nDiq74KvR9yaWqk3MqgTuz8GJVdtkLn77HLzd370uHuHy-eFpcbuEmjY0Q8KEYBx1vSEC21pZwzG2uDfCdlQLrG0jest0wxFHiAiNKdWamc7qru57TOfgasotn3-MJmW5CWP05aQkbc0aKnjDi4pMKh1DStFYOUS3U3EvMZLfDOXEUBaG8oehPBQTnUypiP3KxL_of1xfKoF34A</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Steltner, Kai</creator><creator>Pedersen, Claus B. W.</creator><creator>Kriegesmann, Benedikt</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20230901</creationdate><title>Semi-intrusive approach for stiffness and strength topology optimization under uncertainty</title><author>Steltner, Kai ; Pedersen, Claus B. W. ; Kriegesmann, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2599570bde291f4afe711f1de9fb3c91cf69df5c67070029c133cc5ebfcb4dd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Control</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Financial Engineering</topic><topic>Industrial applications</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Random variables</topic><topic>Research Article</topic><topic>Robust design</topic><topic>Software</topic><topic>Systems Theory</topic><topic>Taylor series</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steltner, Kai</creatorcontrib><creatorcontrib>Pedersen, Claus B. W.</creatorcontrib><creatorcontrib>Kriegesmann, Benedikt</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Optimization and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steltner, Kai</au><au>Pedersen, Claus B. W.</au><au>Kriegesmann, Benedikt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-intrusive approach for stiffness and strength topology optimization under uncertainty</atitle><jtitle>Optimization and engineering</jtitle><stitle>Optim Eng</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>24</volume><issue>3</issue><spage>2181</spage><epage>2211</epage><pages>2181-2211</pages><issn>1389-4420</issn><eissn>1573-2924</eissn><abstract>A semi-intrusive approach for robust design optimization is presented. The stochastic moments of the objective function and constraints are estimated using a Taylor series-based approach, which requires derivatives with respect to design variables, random variables as well as mixed derivatives. The required derivatives with respect to design variables are determined using the intrusive adjoint method available in commercial software. The partial derivatives with respect to random parameters as well as the mixed second derivatives are approximated non-intrusively using finite differences. The presented approach provides a semi-intrusive procedure for robust design optimization at reasonable computational cost while allowing an arbitrary choice of random parameters. The approach is implemented as an add-on for commercial software. The method and its limitations are demonstrated by academic test cases and industrial applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11081-022-09770-z</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-4420
ispartof Optimization and engineering, 2023-09, Vol.24 (3), p.2181-2211
issn 1389-4420
1573-2924
language eng
recordid cdi_proquest_journals_2845639767
source SpringerLink Journals - AutoHoldings
subjects Control
Design optimization
Engineering
Environmental Management
Financial Engineering
Industrial applications
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Parameters
Random variables
Research Article
Robust design
Software
Systems Theory
Taylor series
Topology optimization
title Semi-intrusive approach for stiffness and strength topology optimization under uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A53%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-intrusive%20approach%20for%20stiffness%20and%20strength%20topology%20optimization%20under%20uncertainty&rft.jtitle=Optimization%20and%20engineering&rft.au=Steltner,%20Kai&rft.date=2023-09-01&rft.volume=24&rft.issue=3&rft.spage=2181&rft.epage=2211&rft.pages=2181-2211&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007/s11081-022-09770-z&rft_dat=%3Cproquest_cross%3E2845639767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845639767&rft_id=info:pmid/&rfr_iscdi=true