Contacts for SiC Nano-Microwatt Energy Converters
The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic featu...
Gespeichert in:
Veröffentlicht in: | Moscow University physics bulletin 2023-02, Vol.78 (1), p.14-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | Moscow University physics bulletin |
container_volume | 78 |
creator | Gurskaya, A. V. Dolgopolov, M. V. Chepurnov, V. I. Radzhapov, S. A. |
description | The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of
C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of
- or
-type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs. |
doi_str_mv | 10.3103/S0027134923010149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845639710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845639710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqXwA9giMQee_ew4HlFUKFKBoTBbjmNXqSApdgrqv8dRkBgQ0xvuu7unI-SSwjVSwJs1AJMUuWIIFChXR2RGFfK85AUck9ko56N-Ss5i3AKIgqGaEVr13WDsEDPfh2zdVtmT6fr8sbWh_zLDkC06FzaHLGGfLgwuxHNy4s1bdBc_d05e7xYv1TJfPd8_VLer3DKkKlcyPeG48iW1deFpKeuGY92o0ghpjQBpReMUFxykt4VlnknJJJYNSlUD4pxcTbm70H_sXRz0tt-HLlVqVnJRYGqARNGJSv_GGJzXu9C-m3DQFPS4jP6zTPKwyRMT221c-E3-3_QNI1JiUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845639710</pqid></control><display><type>article</type><title>Contacts for SiC Nano-Microwatt Energy Converters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gurskaya, A. V. ; Dolgopolov, M. V. ; Chepurnov, V. I. ; Radzhapov, S. A.</creator><creatorcontrib>Gurskaya, A. V. ; Dolgopolov, M. V. ; Chepurnov, V. I. ; Radzhapov, S. A.</creatorcontrib><description>The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of
C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of
- or
-type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.</description><identifier>ISSN: 0027-1349</identifier><identifier>EISSN: 1934-8460</identifier><identifier>DOI: 10.3103/S0027134923010149</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemical reactions ; Current carriers ; Electric contacts ; Electric fields ; Electrons ; Heterostructures ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Radioisotopes ; Silicon carbide ; Solid phases ; Theoretical</subject><ispartof>Moscow University physics bulletin, 2023-02, Vol.78 (1), p.14-20</ispartof><rights>Allerton Press, Inc. 2023</rights><rights>Allerton Press, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</citedby><cites>FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027134923010149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027134923010149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gurskaya, A. V.</creatorcontrib><creatorcontrib>Dolgopolov, M. V.</creatorcontrib><creatorcontrib>Chepurnov, V. I.</creatorcontrib><creatorcontrib>Radzhapov, S. A.</creatorcontrib><title>Contacts for SiC Nano-Microwatt Energy Converters</title><title>Moscow University physics bulletin</title><addtitle>Moscow Univ. Phys</addtitle><description>The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of
C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of
- or
-type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.</description><subject>Chemical reactions</subject><subject>Current carriers</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radioisotopes</subject><subject>Silicon carbide</subject><subject>Solid phases</subject><subject>Theoretical</subject><issn>0027-1349</issn><issn>1934-8460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqXwA9giMQee_ew4HlFUKFKBoTBbjmNXqSApdgrqv8dRkBgQ0xvuu7unI-SSwjVSwJs1AJMUuWIIFChXR2RGFfK85AUck9ko56N-Ss5i3AKIgqGaEVr13WDsEDPfh2zdVtmT6fr8sbWh_zLDkC06FzaHLGGfLgwuxHNy4s1bdBc_d05e7xYv1TJfPd8_VLer3DKkKlcyPeG48iW1deFpKeuGY92o0ghpjQBpReMUFxykt4VlnknJJJYNSlUD4pxcTbm70H_sXRz0tt-HLlVqVnJRYGqARNGJSv_GGJzXu9C-m3DQFPS4jP6zTPKwyRMT221c-E3-3_QNI1JiUg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gurskaya, A. V.</creator><creator>Dolgopolov, M. V.</creator><creator>Chepurnov, V. I.</creator><creator>Radzhapov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Contacts for SiC Nano-Microwatt Energy Converters</title><author>Gurskaya, A. V. ; Dolgopolov, M. V. ; Chepurnov, V. I. ; Radzhapov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Current carriers</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radioisotopes</topic><topic>Silicon carbide</topic><topic>Solid phases</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurskaya, A. V.</creatorcontrib><creatorcontrib>Dolgopolov, M. V.</creatorcontrib><creatorcontrib>Chepurnov, V. I.</creatorcontrib><creatorcontrib>Radzhapov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University physics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurskaya, A. V.</au><au>Dolgopolov, M. V.</au><au>Chepurnov, V. I.</au><au>Radzhapov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contacts for SiC Nano-Microwatt Energy Converters</atitle><jtitle>Moscow University physics bulletin</jtitle><stitle>Moscow Univ. Phys</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>78</volume><issue>1</issue><spage>14</spage><epage>20</epage><pages>14-20</pages><issn>0027-1349</issn><eissn>1934-8460</eissn><abstract>The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of
C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of
- or
-type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027134923010149</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-1349 |
ispartof | Moscow University physics bulletin, 2023-02, Vol.78 (1), p.14-20 |
issn | 0027-1349 1934-8460 |
language | eng |
recordid | cdi_proquest_journals_2845639710 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemical reactions Current carriers Electric contacts Electric fields Electrons Heterostructures Mathematical and Computational Physics Physics Physics and Astronomy Radioisotopes Silicon carbide Solid phases Theoretical |
title | Contacts for SiC Nano-Microwatt Energy Converters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contacts%20for%20SiC%20Nano-Microwatt%20Energy%20Converters&rft.jtitle=Moscow%20University%20physics%20bulletin&rft.au=Gurskaya,%20A.%20V.&rft.date=2023-02-01&rft.volume=78&rft.issue=1&rft.spage=14&rft.epage=20&rft.pages=14-20&rft.issn=0027-1349&rft.eissn=1934-8460&rft_id=info:doi/10.3103/S0027134923010149&rft_dat=%3Cproquest_cross%3E2845639710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845639710&rft_id=info:pmid/&rfr_iscdi=true |