Contacts for SiC Nano-Microwatt Energy Converters

The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic featu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University physics bulletin 2023-02, Vol.78 (1), p.14-20
Hauptverfasser: Gurskaya, A. V., Dolgopolov, M. V., Chepurnov, V. I., Radzhapov, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue 1
container_start_page 14
container_title Moscow University physics bulletin
container_volume 78
creator Gurskaya, A. V.
Dolgopolov, M. V.
Chepurnov, V. I.
Radzhapov, S. A.
description The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of - or -type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.
doi_str_mv 10.3103/S0027134923010149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845639710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845639710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</originalsourceid><addsrcrecordid>eNp1kDFPwzAUhC0EEqXwA9giMQee_ew4HlFUKFKBoTBbjmNXqSApdgrqv8dRkBgQ0xvuu7unI-SSwjVSwJs1AJMUuWIIFChXR2RGFfK85AUck9ko56N-Ss5i3AKIgqGaEVr13WDsEDPfh2zdVtmT6fr8sbWh_zLDkC06FzaHLGGfLgwuxHNy4s1bdBc_d05e7xYv1TJfPd8_VLer3DKkKlcyPeG48iW1deFpKeuGY92o0ghpjQBpReMUFxykt4VlnknJJJYNSlUD4pxcTbm70H_sXRz0tt-HLlVqVnJRYGqARNGJSv_GGJzXu9C-m3DQFPS4jP6zTPKwyRMT221c-E3-3_QNI1JiUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845639710</pqid></control><display><type>article</type><title>Contacts for SiC Nano-Microwatt Energy Converters</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gurskaya, A. V. ; Dolgopolov, M. V. ; Chepurnov, V. I. ; Radzhapov, S. A.</creator><creatorcontrib>Gurskaya, A. V. ; Dolgopolov, M. V. ; Chepurnov, V. I. ; Radzhapov, S. A.</creatorcontrib><description>The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of - or -type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.</description><identifier>ISSN: 0027-1349</identifier><identifier>EISSN: 1934-8460</identifier><identifier>DOI: 10.3103/S0027134923010149</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemical reactions ; Current carriers ; Electric contacts ; Electric fields ; Electrons ; Heterostructures ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Radioisotopes ; Silicon carbide ; Solid phases ; Theoretical</subject><ispartof>Moscow University physics bulletin, 2023-02, Vol.78 (1), p.14-20</ispartof><rights>Allerton Press, Inc. 2023</rights><rights>Allerton Press, Inc. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</citedby><cites>FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0027134923010149$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0027134923010149$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gurskaya, A. V.</creatorcontrib><creatorcontrib>Dolgopolov, M. V.</creatorcontrib><creatorcontrib>Chepurnov, V. I.</creatorcontrib><creatorcontrib>Radzhapov, S. A.</creatorcontrib><title>Contacts for SiC Nano-Microwatt Energy Converters</title><title>Moscow University physics bulletin</title><addtitle>Moscow Univ. Phys</addtitle><description>The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of - or -type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.</description><subject>Chemical reactions</subject><subject>Current carriers</subject><subject>Electric contacts</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Heterostructures</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radioisotopes</subject><subject>Silicon carbide</subject><subject>Solid phases</subject><subject>Theoretical</subject><issn>0027-1349</issn><issn>1934-8460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAUhC0EEqXwA9giMQee_ew4HlFUKFKBoTBbjmNXqSApdgrqv8dRkBgQ0xvuu7unI-SSwjVSwJs1AJMUuWIIFChXR2RGFfK85AUck9ko56N-Ss5i3AKIgqGaEVr13WDsEDPfh2zdVtmT6fr8sbWh_zLDkC06FzaHLGGfLgwuxHNy4s1bdBc_d05e7xYv1TJfPd8_VLer3DKkKlcyPeG48iW1deFpKeuGY92o0ghpjQBpReMUFxykt4VlnknJJJYNSlUD4pxcTbm70H_sXRz0tt-HLlVqVnJRYGqARNGJSv_GGJzXu9C-m3DQFPS4jP6zTPKwyRMT221c-E3-3_QNI1JiUg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gurskaya, A. V.</creator><creator>Dolgopolov, M. V.</creator><creator>Chepurnov, V. I.</creator><creator>Radzhapov, S. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Contacts for SiC Nano-Microwatt Energy Converters</title><author>Gurskaya, A. V. ; Dolgopolov, M. V. ; Chepurnov, V. I. ; Radzhapov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-97149e49f81cb6f187bd43bd98a57ca507c5de945407fc6c2f2772738d379b033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical reactions</topic><topic>Current carriers</topic><topic>Electric contacts</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Heterostructures</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radioisotopes</topic><topic>Silicon carbide</topic><topic>Solid phases</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurskaya, A. V.</creatorcontrib><creatorcontrib>Dolgopolov, M. V.</creatorcontrib><creatorcontrib>Chepurnov, V. I.</creatorcontrib><creatorcontrib>Radzhapov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Moscow University physics bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurskaya, A. V.</au><au>Dolgopolov, M. V.</au><au>Chepurnov, V. I.</au><au>Radzhapov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contacts for SiC Nano-Microwatt Energy Converters</atitle><jtitle>Moscow University physics bulletin</jtitle><stitle>Moscow Univ. Phys</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>78</volume><issue>1</issue><spage>14</spage><epage>20</epage><pages>14-20</pages><issn>0027-1349</issn><eissn>1934-8460</eissn><abstract>The aim of the study is to consider the features of the physico–chemical processes in the near-contact region of the semiconductor SiC phase doped with radionuclide by solid-phase diffusion of C atoms, generation of nonequilibrium carriers and the semiconductor phase distinctive characteristic features. The DFT approach in this paper is aimed at obtaining evidence of the vacancy mechanism of diffusion during the formation of the SiC phase in the Si wafer. Radionuclide and silicon atoms counter-diffuse through a growing layer of silicon carbide, forming layers by solid-phase chemical transformation of silicon of - or -type conductivity into heterostructures of anisotypic or isotypic type of conductivity relative to the SiC phase, with superstecheometric alloying with conservation of the valence and the type of impurity conductivity, forming, depending on the phase, effects energetically manifested as the effect of ‘‘the inner sun,’’ which is the source of electrons and electron–hole pairs at ionization losses. This is due to interactions with the electrons of the shells of neighboring atoms, leading to the formation of electrons and holes in the region of spatial charge and carrying by built-in electric fields. The purpose of the study is due to an increase in the efficiency of separation of electron–hole pairs.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0027134923010149</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0027-1349
ispartof Moscow University physics bulletin, 2023-02, Vol.78 (1), p.14-20
issn 0027-1349
1934-8460
language eng
recordid cdi_proquest_journals_2845639710
source SpringerLink Journals - AutoHoldings
subjects Chemical reactions
Current carriers
Electric contacts
Electric fields
Electrons
Heterostructures
Mathematical and Computational Physics
Physics
Physics and Astronomy
Radioisotopes
Silicon carbide
Solid phases
Theoretical
title Contacts for SiC Nano-Microwatt Energy Converters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contacts%20for%20SiC%20Nano-Microwatt%20Energy%20Converters&rft.jtitle=Moscow%20University%20physics%20bulletin&rft.au=Gurskaya,%20A.%20V.&rft.date=2023-02-01&rft.volume=78&rft.issue=1&rft.spage=14&rft.epage=20&rft.pages=14-20&rft.issn=0027-1349&rft.eissn=1934-8460&rft_id=info:doi/10.3103/S0027134923010149&rft_dat=%3Cproquest_cross%3E2845639710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845639710&rft_id=info:pmid/&rfr_iscdi=true