In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium‐Oxygen Batteries

The solid electrolyte interphase (SEI) on lithium metal anodes (LMA) plays a critical role in affording a long lifespan required for aprotic lithium‐oxygen (Li–O2) batteries. Nevertheless, the crossover of oxygen from the cathode to the anode, an inevitable phenomenon for most of the current Li–O2 b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-08, Vol.13 (29), p.n/a
Hauptverfasser: Zhao, Zhiwei, Pang, Long, Wu, Yuyue, Chen, Yazhou, Peng, Zhangquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Advanced energy materials
container_volume 13
creator Zhao, Zhiwei
Pang, Long
Wu, Yuyue
Chen, Yazhou
Peng, Zhangquan
description The solid electrolyte interphase (SEI) on lithium metal anodes (LMA) plays a critical role in affording a long lifespan required for aprotic lithium‐oxygen (Li–O2) batteries. Nevertheless, the crossover of oxygen from the cathode to the anode, an inevitable phenomenon for most of the current Li–O2 batteries, and its effects on the formation and operation of SEI on LMA remain less explored. In this work, a mechanistic study of the SEI formation at a model Cu/dimethyl sulfoxide (DMSO) interface in the presence of oxygen is presented. Direct spectroscopic evidence coupled with theoretical calculation reveals that oxygen can alter the SEI formation pathway and result in distinct SEI properties. Specifically, oxygen can inhibit the fission of the C–S bond of DMSO solvent and therefore reduce the formation of unstable SEI components (e.g., C≡C species) and volatile products (e.g., C2H6 and H2). Thus, the SEI formed under oxygen is more uniform and of less voids, and enables improved electrochemical performance of LMA. This work presents new insights into the oxygen crossover effects on SEI chemistry and is beneficial for designing better LMA/electrolyte interface for future Li–O2 batteries. Lithium‐oxygen batteries are envisioned as a critical  energy storage technology. Nevertheless, the design criteria of the solid electrolyte interphase (SEI) on Li anodes are challenged by oxygen crossover effects. In situ spectroscopic evidence of SEI formation process on a model Cu/dimethyl sulfoxide interface is obtained and reveals that oxygen can alter the SEI formation pathways and resultant distinct interfacial properties.
doi_str_mv 10.1002/aenm.202301127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845397554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845397554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-ccf7b91b6f782f9b7c6822b9532d2da1392c5e68869b7443833a2d5a5f72e4f83</originalsourceid><addsrcrecordid>eNqFkE9PwyAchhujicvc1TOJ507-tbTHuVRdMp3J9NxQChtLVyq0ak_6EfyMfhKZM_MoF0h-z_MCbxCcIzhGEOJLLuvtGENMIEKYHQUDFCMaxgmFx4czwafByLkN9IumCBIyCN5nNVjqtgPLRorWGidMowV4sKbQ9QoYBRZv_UrWYOpnzrxICzKlPOqA8aapdAmy6ket-laCWd1K26y5k0DXYNJY0_q4uW7Xutt-fXz-pl3x1nNaurPgRPHKydHvPgyerrPH6W04X9zMppN5KAhiLBRCsSJFRaxYglVaMBEnGBdpRHCJS45IikUk4ySJ_YxSkhDCcRnxSDEsqUrIMLjY5_oXPXfStfnGdLb2V-Y4oRFJWRRRT433lNj91kqVN1Zvue1zBPNdz_mu5_zQsxfSvfCqK9n_Q-eT7P7uz_0G0AyDpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845397554</pqid></control><display><type>article</type><title>In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium‐Oxygen Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Zhiwei ; Pang, Long ; Wu, Yuyue ; Chen, Yazhou ; Peng, Zhangquan</creator><creatorcontrib>Zhao, Zhiwei ; Pang, Long ; Wu, Yuyue ; Chen, Yazhou ; Peng, Zhangquan</creatorcontrib><description>The solid electrolyte interphase (SEI) on lithium metal anodes (LMA) plays a critical role in affording a long lifespan required for aprotic lithium‐oxygen (Li–O2) batteries. Nevertheless, the crossover of oxygen from the cathode to the anode, an inevitable phenomenon for most of the current Li–O2 batteries, and its effects on the formation and operation of SEI on LMA remain less explored. In this work, a mechanistic study of the SEI formation at a model Cu/dimethyl sulfoxide (DMSO) interface in the presence of oxygen is presented. Direct spectroscopic evidence coupled with theoretical calculation reveals that oxygen can alter the SEI formation pathway and result in distinct SEI properties. Specifically, oxygen can inhibit the fission of the C–S bond of DMSO solvent and therefore reduce the formation of unstable SEI components (e.g., C≡C species) and volatile products (e.g., C2H6 and H2). Thus, the SEI formed under oxygen is more uniform and of less voids, and enables improved electrochemical performance of LMA. This work presents new insights into the oxygen crossover effects on SEI chemistry and is beneficial for designing better LMA/electrolyte interface for future Li–O2 batteries. Lithium‐oxygen batteries are envisioned as a critical  energy storage technology. Nevertheless, the design criteria of the solid electrolyte interphase (SEI) on Li anodes are challenged by oxygen crossover effects. In situ spectroscopic evidence of SEI formation process on a model Cu/dimethyl sulfoxide interface is obtained and reveals that oxygen can alter the SEI formation pathways and resultant distinct interfacial properties.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202301127</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Dimethyl sulfoxide ; Electrochemical analysis ; Electrolytes ; in situ spectroscopy ; Lithium ; lithium anodes ; lithium‐O2 batteries ; Oxygen ; oxygen crossover effects ; solid electrolyte interphases ; Solid electrolytes ; Spectroscopy</subject><ispartof>Advanced energy materials, 2023-08, Vol.13 (29), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-ccf7b91b6f782f9b7c6822b9532d2da1392c5e68869b7443833a2d5a5f72e4f83</citedby><cites>FETCH-LOGICAL-c3177-ccf7b91b6f782f9b7c6822b9532d2da1392c5e68869b7443833a2d5a5f72e4f83</cites><orcidid>0000-0002-4338-314X ; 0000-0002-0378-2744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202301127$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202301127$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Pang, Long</creatorcontrib><creatorcontrib>Wu, Yuyue</creatorcontrib><creatorcontrib>Chen, Yazhou</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><title>In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium‐Oxygen Batteries</title><title>Advanced energy materials</title><description>The solid electrolyte interphase (SEI) on lithium metal anodes (LMA) plays a critical role in affording a long lifespan required for aprotic lithium‐oxygen (Li–O2) batteries. Nevertheless, the crossover of oxygen from the cathode to the anode, an inevitable phenomenon for most of the current Li–O2 batteries, and its effects on the formation and operation of SEI on LMA remain less explored. In this work, a mechanistic study of the SEI formation at a model Cu/dimethyl sulfoxide (DMSO) interface in the presence of oxygen is presented. Direct spectroscopic evidence coupled with theoretical calculation reveals that oxygen can alter the SEI formation pathway and result in distinct SEI properties. Specifically, oxygen can inhibit the fission of the C–S bond of DMSO solvent and therefore reduce the formation of unstable SEI components (e.g., C≡C species) and volatile products (e.g., C2H6 and H2). Thus, the SEI formed under oxygen is more uniform and of less voids, and enables improved electrochemical performance of LMA. This work presents new insights into the oxygen crossover effects on SEI chemistry and is beneficial for designing better LMA/electrolyte interface for future Li–O2 batteries. Lithium‐oxygen batteries are envisioned as a critical  energy storage technology. Nevertheless, the design criteria of the solid electrolyte interphase (SEI) on Li anodes are challenged by oxygen crossover effects. In situ spectroscopic evidence of SEI formation process on a model Cu/dimethyl sulfoxide interface is obtained and reveals that oxygen can alter the SEI formation pathways and resultant distinct interfacial properties.</description><subject>Anodes</subject><subject>Dimethyl sulfoxide</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>in situ spectroscopy</subject><subject>Lithium</subject><subject>lithium anodes</subject><subject>lithium‐O2 batteries</subject><subject>Oxygen</subject><subject>oxygen crossover effects</subject><subject>solid electrolyte interphases</subject><subject>Solid electrolytes</subject><subject>Spectroscopy</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwyAchhujicvc1TOJ507-tbTHuVRdMp3J9NxQChtLVyq0ak_6EfyMfhKZM_MoF0h-z_MCbxCcIzhGEOJLLuvtGENMIEKYHQUDFCMaxgmFx4czwafByLkN9IumCBIyCN5nNVjqtgPLRorWGidMowV4sKbQ9QoYBRZv_UrWYOpnzrxICzKlPOqA8aapdAmy6ket-laCWd1K26y5k0DXYNJY0_q4uW7Xutt-fXz-pl3x1nNaurPgRPHKydHvPgyerrPH6W04X9zMppN5KAhiLBRCsSJFRaxYglVaMBEnGBdpRHCJS45IikUk4ySJ_YxSkhDCcRnxSDEsqUrIMLjY5_oXPXfStfnGdLb2V-Y4oRFJWRRRT433lNj91kqVN1Zvue1zBPNdz_mu5_zQsxfSvfCqK9n_Q-eT7P7uz_0G0AyDpQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhao, Zhiwei</creator><creator>Pang, Long</creator><creator>Wu, Yuyue</creator><creator>Chen, Yazhou</creator><creator>Peng, Zhangquan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4338-314X</orcidid><orcidid>https://orcid.org/0000-0002-0378-2744</orcidid></search><sort><creationdate>20230801</creationdate><title>In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium‐Oxygen Batteries</title><author>Zhao, Zhiwei ; Pang, Long ; Wu, Yuyue ; Chen, Yazhou ; Peng, Zhangquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-ccf7b91b6f782f9b7c6822b9532d2da1392c5e68869b7443833a2d5a5f72e4f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Dimethyl sulfoxide</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>in situ spectroscopy</topic><topic>Lithium</topic><topic>lithium anodes</topic><topic>lithium‐O2 batteries</topic><topic>Oxygen</topic><topic>oxygen crossover effects</topic><topic>solid electrolyte interphases</topic><topic>Solid electrolytes</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Pang, Long</creatorcontrib><creatorcontrib>Wu, Yuyue</creatorcontrib><creatorcontrib>Chen, Yazhou</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhiwei</au><au>Pang, Long</au><au>Wu, Yuyue</au><au>Chen, Yazhou</au><au>Peng, Zhangquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium‐Oxygen Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>29</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The solid electrolyte interphase (SEI) on lithium metal anodes (LMA) plays a critical role in affording a long lifespan required for aprotic lithium‐oxygen (Li–O2) batteries. Nevertheless, the crossover of oxygen from the cathode to the anode, an inevitable phenomenon for most of the current Li–O2 batteries, and its effects on the formation and operation of SEI on LMA remain less explored. In this work, a mechanistic study of the SEI formation at a model Cu/dimethyl sulfoxide (DMSO) interface in the presence of oxygen is presented. Direct spectroscopic evidence coupled with theoretical calculation reveals that oxygen can alter the SEI formation pathway and result in distinct SEI properties. Specifically, oxygen can inhibit the fission of the C–S bond of DMSO solvent and therefore reduce the formation of unstable SEI components (e.g., C≡C species) and volatile products (e.g., C2H6 and H2). Thus, the SEI formed under oxygen is more uniform and of less voids, and enables improved electrochemical performance of LMA. This work presents new insights into the oxygen crossover effects on SEI chemistry and is beneficial for designing better LMA/electrolyte interface for future Li–O2 batteries. Lithium‐oxygen batteries are envisioned as a critical  energy storage technology. Nevertheless, the design criteria of the solid electrolyte interphase (SEI) on Li anodes are challenged by oxygen crossover effects. In situ spectroscopic evidence of SEI formation process on a model Cu/dimethyl sulfoxide interface is obtained and reveals that oxygen can alter the SEI formation pathways and resultant distinct interfacial properties.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202301127</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4338-314X</orcidid><orcidid>https://orcid.org/0000-0002-0378-2744</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-08, Vol.13 (29), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2845397554
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Dimethyl sulfoxide
Electrochemical analysis
Electrolytes
in situ spectroscopy
Lithium
lithium anodes
lithium‐O2 batteries
Oxygen
oxygen crossover effects
solid electrolyte interphases
Solid electrolytes
Spectroscopy
title In Situ Spectroscopic Probing of Oxygen Crossover Effects on Solid Electrolyte Interphase in Aprotic Lithium‐Oxygen Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Spectroscopic%20Probing%20of%20Oxygen%20Crossover%20Effects%20on%20Solid%20Electrolyte%20Interphase%20in%20Aprotic%20Lithium%E2%80%90Oxygen%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhao,%20Zhiwei&rft.date=2023-08-01&rft.volume=13&rft.issue=29&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202301127&rft_dat=%3Cproquest_cross%3E2845397554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845397554&rft_id=info:pmid/&rfr_iscdi=true