A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries

Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electroly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-08, Vol.13 (29), p.n/a
Hauptverfasser: Yang, Jian, Guo, Xin, Gao, Hong, Wang, Tianyi, Liu, Zhigang, Yang, Qing, Yao, Hang, Li, Jiabao, Wang, Chengyin, Wang, Guoxiu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 29
container_start_page
container_title Advanced energy materials
container_volume 13
creator Yang, Jian
Guo, Xin
Gao, Hong
Wang, Tianyi
Liu, Zhigang
Yang, Qing
Yao, Hang
Li, Jiabao
Wang, Chengyin
Wang, Guoxiu
description Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C. A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.
doi_str_mv 10.1002/aenm.202300351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845397473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845397473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUDKJgqV49L3hO3c0mm-SYlmgL9QNa8Rhesi91S7KpmwbJTfAP-Bv9JW6J1KPv8t4MM_NgHOeK0Qmj1LsB1PXEox6nlAfsxBkxwXxXRD49Pd7cO3cu23ZL7fgxo5yPnM-EzNXm9fvj6wlN2ZgadIEkqaqmt9wUWpQk0Y1EkmrIK4vynqw6U4KVgZZkofc4oFRvlEY0Sm-ITSIvSqLNWGO9QwP7ziBZNVJ1tSUXjSZT2FurwvbCOSuhavHyd4-d59t0PZu7y8e7xSxZugUPQuZGEfii4DmGXEQsBylK5nkyhxxzwLwUIgoFDWMpGC8LCTErOY_CggEEHCw5dq6H3J1p3jps99m26Yy2LzMv8gMeh37IrWoyqArTtK3BMtsZVYPpM0azQ9fZoevs2LU1xIPhXVXY_6POkvTh_s_7Axn2h8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845397473</pqid></control><display><type>article</type><title>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Jian ; Guo, Xin ; Gao, Hong ; Wang, Tianyi ; Liu, Zhigang ; Yang, Qing ; Yao, Hang ; Li, Jiabao ; Wang, Chengyin ; Wang, Guoxiu</creator><creatorcontrib>Yang, Jian ; Guo, Xin ; Gao, Hong ; Wang, Tianyi ; Liu, Zhigang ; Yang, Qing ; Yao, Hang ; Li, Jiabao ; Wang, Chengyin ; Wang, Guoxiu</creatorcontrib><description>Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C. A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300351</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon ; Dimethyl ether ; Electrochemical analysis ; Electrolytes ; Nanorods ; Reaction kinetics ; Sodium ; Sodium-ion batteries ; solid‐electrolyte interfaces ; Solvation ; solvation effect ; surface engineering ; Tin ; wide‐temperature applications</subject><ispartof>Advanced energy materials, 2023-08, Vol.13 (29), p.n/a</ispartof><rights>2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</citedby><cites>FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</cites><orcidid>0000-0003-4295-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300351$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300351$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Yao, Hang</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Wang, Chengyin</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><title>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</title><title>Advanced energy materials</title><description>Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C. A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Dimethyl ether</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Nanorods</subject><subject>Reaction kinetics</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>solid‐electrolyte interfaces</subject><subject>Solvation</subject><subject>solvation effect</subject><subject>surface engineering</subject><subject>Tin</subject><subject>wide‐temperature applications</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUE1Lw0AUDKJgqV49L3hO3c0mm-SYlmgL9QNa8Rhesi91S7KpmwbJTfAP-Bv9JW6J1KPv8t4MM_NgHOeK0Qmj1LsB1PXEox6nlAfsxBkxwXxXRD49Pd7cO3cu23ZL7fgxo5yPnM-EzNXm9fvj6wlN2ZgadIEkqaqmt9wUWpQk0Y1EkmrIK4vynqw6U4KVgZZkofc4oFRvlEY0Sm-ITSIvSqLNWGO9QwP7ziBZNVJ1tSUXjSZT2FurwvbCOSuhavHyd4-d59t0PZu7y8e7xSxZugUPQuZGEfii4DmGXEQsBylK5nkyhxxzwLwUIgoFDWMpGC8LCTErOY_CggEEHCw5dq6H3J1p3jps99m26Yy2LzMv8gMeh37IrWoyqArTtK3BMtsZVYPpM0azQ9fZoevs2LU1xIPhXVXY_6POkvTh_s_7Axn2h8I</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yang, Jian</creator><creator>Guo, Xin</creator><creator>Gao, Hong</creator><creator>Wang, Tianyi</creator><creator>Liu, Zhigang</creator><creator>Yang, Qing</creator><creator>Yao, Hang</creator><creator>Li, Jiabao</creator><creator>Wang, Chengyin</creator><creator>Wang, Guoxiu</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid></search><sort><creationdate>20230801</creationdate><title>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</title><author>Yang, Jian ; Guo, Xin ; Gao, Hong ; Wang, Tianyi ; Liu, Zhigang ; Yang, Qing ; Yao, Hang ; Li, Jiabao ; Wang, Chengyin ; Wang, Guoxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Dimethyl ether</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Nanorods</topic><topic>Reaction kinetics</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>solid‐electrolyte interfaces</topic><topic>Solvation</topic><topic>solvation effect</topic><topic>surface engineering</topic><topic>Tin</topic><topic>wide‐temperature applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Yao, Hang</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Wang, Chengyin</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jian</au><au>Guo, Xin</au><au>Gao, Hong</au><au>Wang, Tianyi</au><au>Liu, Zhigang</au><au>Yang, Qing</au><au>Yao, Hang</au><au>Li, Jiabao</au><au>Wang, Chengyin</au><au>Wang, Guoxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>29</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C. A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300351</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2023-08, Vol.13 (29), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2845397473
source Wiley Online Library Journals Frontfile Complete
subjects Anodes
Carbon
Dimethyl ether
Electrochemical analysis
Electrolytes
Nanorods
Reaction kinetics
Sodium
Sodium-ion batteries
solid‐electrolyte interfaces
Solvation
solvation effect
surface engineering
Tin
wide‐temperature applications
title A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%E2%80%90Performance%20Alloy%E2%80%90Based%20Anode%20Enabled%20by%20Surface%20and%20Interface%20Engineering%20for%20Wide%E2%80%90Temperature%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Jian&rft.date=2023-08-01&rft.volume=13&rft.issue=29&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300351&rft_dat=%3Cproquest_cross%3E2845397473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845397473&rft_id=info:pmid/&rfr_iscdi=true