A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries
Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electroly...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2023-08, Vol.13 (29), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 29 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 13 |
creator | Yang, Jian Guo, Xin Gao, Hong Wang, Tianyi Liu, Zhigang Yang, Qing Yao, Hang Li, Jiabao Wang, Chengyin Wang, Guoxiu |
description | Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C.
A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance. |
doi_str_mv | 10.1002/aenm.202300351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845397473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845397473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</originalsourceid><addsrcrecordid>eNqFUE1Lw0AUDKJgqV49L3hO3c0mm-SYlmgL9QNa8Rhesi91S7KpmwbJTfAP-Bv9JW6J1KPv8t4MM_NgHOeK0Qmj1LsB1PXEox6nlAfsxBkxwXxXRD49Pd7cO3cu23ZL7fgxo5yPnM-EzNXm9fvj6wlN2ZgadIEkqaqmt9wUWpQk0Y1EkmrIK4vynqw6U4KVgZZkofc4oFRvlEY0Sm-ITSIvSqLNWGO9QwP7ziBZNVJ1tSUXjSZT2FurwvbCOSuhavHyd4-d59t0PZu7y8e7xSxZugUPQuZGEfii4DmGXEQsBylK5nkyhxxzwLwUIgoFDWMpGC8LCTErOY_CggEEHCw5dq6H3J1p3jps99m26Yy2LzMv8gMeh37IrWoyqArTtK3BMtsZVYPpM0azQ9fZoevs2LU1xIPhXVXY_6POkvTh_s_7Axn2h8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845397473</pqid></control><display><type>article</type><title>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Jian ; Guo, Xin ; Gao, Hong ; Wang, Tianyi ; Liu, Zhigang ; Yang, Qing ; Yao, Hang ; Li, Jiabao ; Wang, Chengyin ; Wang, Guoxiu</creator><creatorcontrib>Yang, Jian ; Guo, Xin ; Gao, Hong ; Wang, Tianyi ; Liu, Zhigang ; Yang, Qing ; Yao, Hang ; Li, Jiabao ; Wang, Chengyin ; Wang, Guoxiu</creatorcontrib><description>Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C.
A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202300351</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon ; Dimethyl ether ; Electrochemical analysis ; Electrolytes ; Nanorods ; Reaction kinetics ; Sodium ; Sodium-ion batteries ; solid‐electrolyte interfaces ; Solvation ; solvation effect ; surface engineering ; Tin ; wide‐temperature applications</subject><ispartof>Advanced energy materials, 2023-08, Vol.13 (29), p.n/a</ispartof><rights>2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</citedby><cites>FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</cites><orcidid>0000-0003-4295-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202300351$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202300351$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Yao, Hang</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Wang, Chengyin</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><title>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</title><title>Advanced energy materials</title><description>Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C.
A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Dimethyl ether</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Nanorods</subject><subject>Reaction kinetics</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>solid‐electrolyte interfaces</subject><subject>Solvation</subject><subject>solvation effect</subject><subject>surface engineering</subject><subject>Tin</subject><subject>wide‐temperature applications</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUE1Lw0AUDKJgqV49L3hO3c0mm-SYlmgL9QNa8Rhesi91S7KpmwbJTfAP-Bv9JW6J1KPv8t4MM_NgHOeK0Qmj1LsB1PXEox6nlAfsxBkxwXxXRD49Pd7cO3cu23ZL7fgxo5yPnM-EzNXm9fvj6wlN2ZgadIEkqaqmt9wUWpQk0Y1EkmrIK4vynqw6U4KVgZZkofc4oFRvlEY0Sm-ITSIvSqLNWGO9QwP7ziBZNVJ1tSUXjSZT2FurwvbCOSuhavHyd4-d59t0PZu7y8e7xSxZugUPQuZGEfii4DmGXEQsBylK5nkyhxxzwLwUIgoFDWMpGC8LCTErOY_CggEEHCw5dq6H3J1p3jps99m26Yy2LzMv8gMeh37IrWoyqArTtK3BMtsZVYPpM0azQ9fZoevs2LU1xIPhXVXY_6POkvTh_s_7Axn2h8I</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yang, Jian</creator><creator>Guo, Xin</creator><creator>Gao, Hong</creator><creator>Wang, Tianyi</creator><creator>Liu, Zhigang</creator><creator>Yang, Qing</creator><creator>Yao, Hang</creator><creator>Li, Jiabao</creator><creator>Wang, Chengyin</creator><creator>Wang, Guoxiu</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid></search><sort><creationdate>20230801</creationdate><title>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</title><author>Yang, Jian ; Guo, Xin ; Gao, Hong ; Wang, Tianyi ; Liu, Zhigang ; Yang, Qing ; Yao, Hang ; Li, Jiabao ; Wang, Chengyin ; Wang, Guoxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-88a46c3be73681bad6f122dbabebaebf66876079d613fcda91f3387c1aa53a613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Dimethyl ether</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Nanorods</topic><topic>Reaction kinetics</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>solid‐electrolyte interfaces</topic><topic>Solvation</topic><topic>solvation effect</topic><topic>surface engineering</topic><topic>Tin</topic><topic>wide‐temperature applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Gao, Hong</creatorcontrib><creatorcontrib>Wang, Tianyi</creatorcontrib><creatorcontrib>Liu, Zhigang</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Yao, Hang</creatorcontrib><creatorcontrib>Li, Jiabao</creatorcontrib><creatorcontrib>Wang, Chengyin</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jian</au><au>Guo, Xin</au><au>Gao, Hong</au><au>Wang, Tianyi</au><au>Liu, Zhigang</au><au>Yang, Qing</au><au>Yao, Hang</au><au>Li, Jiabao</au><au>Wang, Chengyin</au><au>Wang, Guoxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>13</volume><issue>29</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Alloy‐based anodes have shown great potential to be applied in sodium‐ion batteries (SIBs) due to their high theoretical capacities, suitable working potential, and abundant earth reserves. However, their practical applications are severely impeded by large volume expansion, unstable solid‐electrolyte interfaces (SEI), and sluggish reaction kinetics during cycling. Herein, a surface engineering of tin nanorods via N‐doped carbon layers (Sn@NC) and an interface engineering strategy to improve the electrochemical performance in SIBs are reported. In particular, the authors demonstrate that uniform surface modification can effectively facilitate electron and sodium transport kinetics, confine alloy pulverization, and simultaneously synergize interactions with the ether‐based electrolyte to form a robust organic‐inorganic SEI. Moreover, it is discovered that the diethylene glycol dimethyl ether electrolyte with strong stability and an optimized Na+ solvation structure can co‐embed the carbon layer to achieve fast reaction kinetics. Consequently, Sn@NC anodes deliver extra‐long cycling stability of more than 10 000 cycles. The full cell of Na3V2(PO4)3║Sn@NC exhibits high energy density (215 Wh kg−1), excellent high‐rate capability (reaches 80% capacity in 2 min), and long cycle life over a wide temperature range of −20 to 50 °C.
A nitrogen‐doped carbon surface and a diglyme‐based electrolyte are designed to synergistically improve the electrochemical performance of alloy anode for all‐climate sodium‐ion batteries. The optimized single‐shelled [Na‐DEGDMEx]+ complexes co‐intercalation mechanism boosts reaction kinetics, and the formation of a thin, dense, and highly ionic conductive solid electrolyte inteface contributes to excellent long‐cycling performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202300351</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2023-08, Vol.13 (29), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2845397473 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Carbon Dimethyl ether Electrochemical analysis Electrolytes Nanorods Reaction kinetics Sodium Sodium-ion batteries solid‐electrolyte interfaces Solvation solvation effect surface engineering Tin wide‐temperature applications |
title | A High‐Performance Alloy‐Based Anode Enabled by Surface and Interface Engineering for Wide‐Temperature Sodium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%E2%80%90Performance%20Alloy%E2%80%90Based%20Anode%20Enabled%20by%20Surface%20and%20Interface%20Engineering%20for%20Wide%E2%80%90Temperature%20Sodium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Yang,%20Jian&rft.date=2023-08-01&rft.volume=13&rft.issue=29&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202300351&rft_dat=%3Cproquest_cross%3E2845397473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845397473&rft_id=info:pmid/&rfr_iscdi=true |