A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries

Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and perfor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2023-07, Vol.16 (7), p.9259-9266
Hauptverfasser: Xu, Yifan, Zhao, Ruo, Gao, Lei, Gao, Tingsong, Wang, Wenjuan, Bian, Juncao, Han, Songbai, Zhu, Jinlong, Xu, Qiang, Zhao, Yusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9266
container_issue 7
container_start_page 9259
container_title Nano research
container_volume 16
creator Xu, Yifan
Zhao, Ruo
Gao, Lei
Gao, Tingsong
Wang, Wenjuan
Bian, Juncao
Han, Songbai
Zhu, Jinlong
Xu, Qiang
Zhao, Yusheng
description Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and performance decay in Li-metal batteries. Although highly polymerized SPEs are more stable than lowly polymerized ones, they are restricted by their sluggish long-chain mobility and poor ionic conductivity. In this work, a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE. The obtained SPE has high stability due to its high polymerization degree after the long-term heating process. The fibrous membrane plays a vital role in improving the SPE’s properties. The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface. The fibrous nanostructure can efficiently interact with the polymeric matrix, providing rich hopping sites for fast Li + migration. Consequently, the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries. This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity, paving the way for designing high-performance SPEs with good comprehensive properties.
doi_str_mv 10.1007/s12274-023-5480-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845345702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845345702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-65761ae0b47d773422e8212b208f606e428c80b1a23206a5d2be6a7c3189fa933</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAczTJZpPssRS_QPCi55DszmrKftQkC62_3pS1eHIuM8O8zzvwInTN6C2jVN1FxrkShPKClEJTsjtBC1ZVmtBcp8eZcXGOLmLcUCo5E3qB_Aq33kEgAfzQjqGGBsex8w3ejt2-h4ChgzqFvCTAbo_9gKNP0_Hsv23y44AzimOyrgPc-fTppx73kGyHnU0pyyBeorPWdhGufvsSvT_cv62fyMvr4_N69ULqgslEZKkks0CdUI1SheAcNGfccapbSSUIrmtNHbO84FTasuEOpFUZ1lVrq6JYopvZdxvGrwliMptxCkN-abgWZSFKlVNaIjar6jDGGKA12-B7G_aGUXNI1MyJmqw1h0TNLjN8ZmLWDh8Q_pz_h34AIp16SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845345702</pqid></control><display><type>article</type><title>A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries</title><source>SpringerNature Journals</source><creator>Xu, Yifan ; Zhao, Ruo ; Gao, Lei ; Gao, Tingsong ; Wang, Wenjuan ; Bian, Juncao ; Han, Songbai ; Zhu, Jinlong ; Xu, Qiang ; Zhao, Yusheng</creator><creatorcontrib>Xu, Yifan ; Zhao, Ruo ; Gao, Lei ; Gao, Tingsong ; Wang, Wenjuan ; Bian, Juncao ; Han, Songbai ; Zhu, Jinlong ; Xu, Qiang ; Zhao, Yusheng</creatorcontrib><description>Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and performance decay in Li-metal batteries. Although highly polymerized SPEs are more stable than lowly polymerized ones, they are restricted by their sluggish long-chain mobility and poor ionic conductivity. In this work, a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE. The obtained SPE has high stability due to its high polymerization degree after the long-term heating process. The fibrous membrane plays a vital role in improving the SPE’s properties. The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface. The fibrous nanostructure can efficiently interact with the polymeric matrix, providing rich hopping sites for fast Li + migration. Consequently, the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries. This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity, paving the way for designing high-performance SPEs with good comprehensive properties.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-023-5480-x</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Chain mobility ; Chemistry and Materials Science ; Condensed Matter Physics ; Conductivity ; Current distribution ; Electrolytes ; Fiber reinforced polymers ; Ion currents ; Ions ; Lithium ; Lithium batteries ; Materials Science ; Mechanical properties ; Membranes ; Molten salt electrolytes ; Nanotechnology ; Polymerization ; Polymers ; Research Article ; Solid electrolytes</subject><ispartof>Nano research, 2023-07, Vol.16 (7), p.9259-9266</ispartof><rights>Tsinghua University Press 2023</rights><rights>Tsinghua University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-65761ae0b47d773422e8212b208f606e428c80b1a23206a5d2be6a7c3189fa933</citedby><cites>FETCH-LOGICAL-c316t-65761ae0b47d773422e8212b208f606e428c80b1a23206a5d2be6a7c3189fa933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-023-5480-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-023-5480-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Yifan</creatorcontrib><creatorcontrib>Zhao, Ruo</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><creatorcontrib>Gao, Tingsong</creatorcontrib><creatorcontrib>Wang, Wenjuan</creatorcontrib><creatorcontrib>Bian, Juncao</creatorcontrib><creatorcontrib>Han, Songbai</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><title>A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and performance decay in Li-metal batteries. Although highly polymerized SPEs are more stable than lowly polymerized ones, they are restricted by their sluggish long-chain mobility and poor ionic conductivity. In this work, a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE. The obtained SPE has high stability due to its high polymerization degree after the long-term heating process. The fibrous membrane plays a vital role in improving the SPE’s properties. The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface. The fibrous nanostructure can efficiently interact with the polymeric matrix, providing rich hopping sites for fast Li + migration. Consequently, the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries. This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity, paving the way for designing high-performance SPEs with good comprehensive properties.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chain mobility</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Current distribution</subject><subject>Electrolytes</subject><subject>Fiber reinforced polymers</subject><subject>Ion currents</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Membranes</subject><subject>Molten salt electrolytes</subject><subject>Nanotechnology</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Research Article</subject><subject>Solid electrolytes</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAczTJZpPssRS_QPCi55DszmrKftQkC62_3pS1eHIuM8O8zzvwInTN6C2jVN1FxrkShPKClEJTsjtBC1ZVmtBcp8eZcXGOLmLcUCo5E3qB_Aq33kEgAfzQjqGGBsex8w3ejt2-h4ChgzqFvCTAbo_9gKNP0_Hsv23y44AzimOyrgPc-fTppx73kGyHnU0pyyBeorPWdhGufvsSvT_cv62fyMvr4_N69ULqgslEZKkks0CdUI1SheAcNGfccapbSSUIrmtNHbO84FTasuEOpFUZ1lVrq6JYopvZdxvGrwliMptxCkN-abgWZSFKlVNaIjar6jDGGKA12-B7G_aGUXNI1MyJmqw1h0TNLjN8ZmLWDh8Q_pz_h34AIp16SQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Xu, Yifan</creator><creator>Zhao, Ruo</creator><creator>Gao, Lei</creator><creator>Gao, Tingsong</creator><creator>Wang, Wenjuan</creator><creator>Bian, Juncao</creator><creator>Han, Songbai</creator><creator>Zhu, Jinlong</creator><creator>Xu, Qiang</creator><creator>Zhao, Yusheng</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230701</creationdate><title>A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries</title><author>Xu, Yifan ; Zhao, Ruo ; Gao, Lei ; Gao, Tingsong ; Wang, Wenjuan ; Bian, Juncao ; Han, Songbai ; Zhu, Jinlong ; Xu, Qiang ; Zhao, Yusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-65761ae0b47d773422e8212b208f606e428c80b1a23206a5d2be6a7c3189fa933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chain mobility</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Current distribution</topic><topic>Electrolytes</topic><topic>Fiber reinforced polymers</topic><topic>Ion currents</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Membranes</topic><topic>Molten salt electrolytes</topic><topic>Nanotechnology</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Research Article</topic><topic>Solid electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yifan</creatorcontrib><creatorcontrib>Zhao, Ruo</creatorcontrib><creatorcontrib>Gao, Lei</creatorcontrib><creatorcontrib>Gao, Tingsong</creatorcontrib><creatorcontrib>Wang, Wenjuan</creatorcontrib><creatorcontrib>Bian, Juncao</creatorcontrib><creatorcontrib>Han, Songbai</creatorcontrib><creatorcontrib>Zhu, Jinlong</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Zhao, Yusheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yifan</au><au>Zhao, Ruo</au><au>Gao, Lei</au><au>Gao, Tingsong</au><au>Wang, Wenjuan</au><au>Bian, Juncao</au><au>Han, Songbai</au><au>Zhu, Jinlong</au><au>Xu, Qiang</au><au>Zhao, Yusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>16</volume><issue>7</issue><spage>9259</spage><epage>9266</epage><pages>9259-9266</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Solid polymer electrolytes (SPEs) by in situ polymerization are attractive due to their good interfacial contact with electrodes. Previously reported in situ polymerized SPEs, however, suffer from the low polymerization degree that causes poor mechanical strength, Li dendrite penetration, and performance decay in Li-metal batteries. Although highly polymerized SPEs are more stable than lowly polymerized ones, they are restricted by their sluggish long-chain mobility and poor ionic conductivity. In this work, a three-dimensional fibrous membrane with ion selectivity was prepared and used as a functional filler for the in situ formed SPE. The obtained SPE has high stability due to its high polymerization degree after the long-term heating process. The fibrous membrane plays a vital role in improving the SPE’s properties. The rich anion-adsorption sites on the fibrous membrane can alleviate the polarization effect and benefit a uniform current distribution at the interface. The fibrous nanostructure can efficiently interact with the polymeric matrix, providing rich hopping sites for fast Li + migration. Consequently, the obtained SPE enables a uniform Li deposition and long-term cycling performance in Li-metal batteries. This work reported an in situ formed SPE with both high polymerization degree and ionic conductivity, paving the way for designing high-performance SPEs with good comprehensive properties.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-023-5480-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2023-07, Vol.16 (7), p.9259-9266
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2845345702
source SpringerNature Journals
subjects Atomic/Molecular Structure and Spectra
Batteries
Biomedicine
Biotechnology
Chain mobility
Chemistry and Materials Science
Condensed Matter Physics
Conductivity
Current distribution
Electrolytes
Fiber reinforced polymers
Ion currents
Ions
Lithium
Lithium batteries
Materials Science
Mechanical properties
Membranes
Molten salt electrolytes
Nanotechnology
Polymerization
Polymers
Research Article
Solid electrolytes
title A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fiber-reinforced%20solid%20polymer%20electrolyte%20by%20in%20situ%20polymerization%20for%20stable%20lithium%20metal%20batteries&rft.jtitle=Nano%20research&rft.au=Xu,%20Yifan&rft.date=2023-07-01&rft.volume=16&rft.issue=7&rft.spage=9259&rft.epage=9266&rft.pages=9259-9266&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-023-5480-x&rft_dat=%3Cproquest_cross%3E2845345702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845345702&rft_id=info:pmid/&rfr_iscdi=true