P‐2.5: Research on real‐time performance of Road condition display for automatic driving

In view of the problems of multi‐scale, densely distributed and difficult small target detection in real‐time road condition detection, a new improved yolov5 real‐time target detection method was proposed. The activation function in the original spatial pyramid (SPPF) was replaced by ReLu in the bac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SID International Symposium Digest of technical papers 2023-04, Vol.54 (S1), p.491-497
Hauptverfasser: Dai, Zhenzhao, Li, Wanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 497
container_issue S1
container_start_page 491
container_title SID International Symposium Digest of technical papers
container_volume 54
creator Dai, Zhenzhao
Li, Wanlin
description In view of the problems of multi‐scale, densely distributed and difficult small target detection in real‐time road condition detection, a new improved yolov5 real‐time target detection method was proposed. The activation function in the original spatial pyramid (SPPF) was replaced by ReLu in the backbone network to enhance the expression ability of the model. The bidirectional feature pyramid (BiFPN) is used to replace the original feature pyramid network (FPN) + pixel aggregation network (PAN) in the neck area. The bidirectional feature fusion improves the utilization of multi‐scale semantic features and strengthens the extraction of image deep features. The convolutional attention mechanism (CBAM) is introduced to further improve the feature extraction ability of the algorithm and make the algorithm pay more attention to useful information. The results of self‐made traffic condition data set show that the average accuracy of the improved yolov5 model reaches 81.3%, which is 10.9% higher than that of the original yolov5 model, showing better detection accuracy and real‐time performance. Compared with some mainstream target detection algorithms, this algorithm has certain advantages.
doi_str_mv 10.1002/sdtp.16339
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845323483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845323483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1059-95e0e703f17a721028720668dd9e52925728c2d84d2c7e73e94af9f95b73322f3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo6jG58g4E7omEvTNO5kvMKAMo7gQggxF83QNjXpKLPzEXxGn8SOde3qwOH7z4EfgEOMJhghcpJM105wQanYAiOCizJDmIltMEJI8EwUxeMu2EtpiRCleS5G4Onu-_OLTNgpnNtkVdSvMDQwWlX1-87XFrY2uhBr1WgLg4PzoAzUoTG-8700PrWVWsOeQLXqQq06r6GJ_t03L_tgx6kq2YO_OQYPlxeL6XU2u726mZ7NMo0RE5lgFlmOqMNccYIRKTlBRVEaIywjgjBOSk1MmRuiueXUilw54QR75pQS4ugYHA132xjeVjZ1chlWselfSlLmjBKal7RXx4PSMaQUrZNt9LWKa4mR3LQnN-3J3_Z6jAf84Su7_kfK-_PF3ZD5ATw_ctc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845323483</pqid></control><display><type>article</type><title>P‐2.5: Research on real‐time performance of Road condition display for automatic driving</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Zhenzhao ; Li, Wanlin</creator><creatorcontrib>Dai, Zhenzhao ; Li, Wanlin</creatorcontrib><description>In view of the problems of multi‐scale, densely distributed and difficult small target detection in real‐time road condition detection, a new improved yolov5 real‐time target detection method was proposed. The activation function in the original spatial pyramid (SPPF) was replaced by ReLu in the backbone network to enhance the expression ability of the model. The bidirectional feature pyramid (BiFPN) is used to replace the original feature pyramid network (FPN) + pixel aggregation network (PAN) in the neck area. The bidirectional feature fusion improves the utilization of multi‐scale semantic features and strengthens the extraction of image deep features. The convolutional attention mechanism (CBAM) is introduced to further improve the feature extraction ability of the algorithm and make the algorithm pay more attention to useful information. The results of self‐made traffic condition data set show that the average accuracy of the improved yolov5 model reaches 81.3%, which is 10.9% higher than that of the original yolov5 model, showing better detection accuracy and real‐time performance. Compared with some mainstream target detection algorithms, this algorithm has certain advantages.</description><identifier>ISSN: 0097-966X</identifier><identifier>EISSN: 2168-0159</identifier><identifier>DOI: 10.1002/sdtp.16339</identifier><language>eng</language><publisher>Campbell: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Attention mechanism CBAM ; BiFPN ; Feature extraction ; Model accuracy ; Object recognition ; Road conditions ; Small goal ; SPPF ; Target detection ; Traffic information ; YOLOV5</subject><ispartof>SID International Symposium Digest of technical papers, 2023-04, Vol.54 (S1), p.491-497</ispartof><rights>2023 The Society for Information Display</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1059-95e0e703f17a721028720668dd9e52925728c2d84d2c7e73e94af9f95b73322f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdtp.16339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdtp.16339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Dai, Zhenzhao</creatorcontrib><creatorcontrib>Li, Wanlin</creatorcontrib><title>P‐2.5: Research on real‐time performance of Road condition display for automatic driving</title><title>SID International Symposium Digest of technical papers</title><description>In view of the problems of multi‐scale, densely distributed and difficult small target detection in real‐time road condition detection, a new improved yolov5 real‐time target detection method was proposed. The activation function in the original spatial pyramid (SPPF) was replaced by ReLu in the backbone network to enhance the expression ability of the model. The bidirectional feature pyramid (BiFPN) is used to replace the original feature pyramid network (FPN) + pixel aggregation network (PAN) in the neck area. The bidirectional feature fusion improves the utilization of multi‐scale semantic features and strengthens the extraction of image deep features. The convolutional attention mechanism (CBAM) is introduced to further improve the feature extraction ability of the algorithm and make the algorithm pay more attention to useful information. The results of self‐made traffic condition data set show that the average accuracy of the improved yolov5 model reaches 81.3%, which is 10.9% higher than that of the original yolov5 model, showing better detection accuracy and real‐time performance. Compared with some mainstream target detection algorithms, this algorithm has certain advantages.</description><subject>Algorithms</subject><subject>Attention mechanism CBAM</subject><subject>BiFPN</subject><subject>Feature extraction</subject><subject>Model accuracy</subject><subject>Object recognition</subject><subject>Road conditions</subject><subject>Small goal</subject><subject>SPPF</subject><subject>Target detection</subject><subject>Traffic information</subject><subject>YOLOV5</subject><issn>0097-966X</issn><issn>2168-0159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo6jG58g4E7omEvTNO5kvMKAMo7gQggxF83QNjXpKLPzEXxGn8SOde3qwOH7z4EfgEOMJhghcpJM105wQanYAiOCizJDmIltMEJI8EwUxeMu2EtpiRCleS5G4Onu-_OLTNgpnNtkVdSvMDQwWlX1-87XFrY2uhBr1WgLg4PzoAzUoTG-8700PrWVWsOeQLXqQq06r6GJ_t03L_tgx6kq2YO_OQYPlxeL6XU2u726mZ7NMo0RE5lgFlmOqMNccYIRKTlBRVEaIywjgjBOSk1MmRuiueXUilw54QR75pQS4ugYHA132xjeVjZ1chlWselfSlLmjBKal7RXx4PSMaQUrZNt9LWKa4mR3LQnN-3J3_Z6jAf84Su7_kfK-_PF3ZD5ATw_ctc</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Dai, Zhenzhao</creator><creator>Li, Wanlin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202304</creationdate><title>P‐2.5: Research on real‐time performance of Road condition display for automatic driving</title><author>Dai, Zhenzhao ; Li, Wanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1059-95e0e703f17a721028720668dd9e52925728c2d84d2c7e73e94af9f95b73322f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Attention mechanism CBAM</topic><topic>BiFPN</topic><topic>Feature extraction</topic><topic>Model accuracy</topic><topic>Object recognition</topic><topic>Road conditions</topic><topic>Small goal</topic><topic>SPPF</topic><topic>Target detection</topic><topic>Traffic information</topic><topic>YOLOV5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Zhenzhao</creatorcontrib><creatorcontrib>Li, Wanlin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SID International Symposium Digest of technical papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Zhenzhao</au><au>Li, Wanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P‐2.5: Research on real‐time performance of Road condition display for automatic driving</atitle><jtitle>SID International Symposium Digest of technical papers</jtitle><date>2023-04</date><risdate>2023</risdate><volume>54</volume><issue>S1</issue><spage>491</spage><epage>497</epage><pages>491-497</pages><issn>0097-966X</issn><eissn>2168-0159</eissn><abstract>In view of the problems of multi‐scale, densely distributed and difficult small target detection in real‐time road condition detection, a new improved yolov5 real‐time target detection method was proposed. The activation function in the original spatial pyramid (SPPF) was replaced by ReLu in the backbone network to enhance the expression ability of the model. The bidirectional feature pyramid (BiFPN) is used to replace the original feature pyramid network (FPN) + pixel aggregation network (PAN) in the neck area. The bidirectional feature fusion improves the utilization of multi‐scale semantic features and strengthens the extraction of image deep features. The convolutional attention mechanism (CBAM) is introduced to further improve the feature extraction ability of the algorithm and make the algorithm pay more attention to useful information. The results of self‐made traffic condition data set show that the average accuracy of the improved yolov5 model reaches 81.3%, which is 10.9% higher than that of the original yolov5 model, showing better detection accuracy and real‐time performance. Compared with some mainstream target detection algorithms, this algorithm has certain advantages.</abstract><cop>Campbell</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sdtp.16339</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-966X
ispartof SID International Symposium Digest of technical papers, 2023-04, Vol.54 (S1), p.491-497
issn 0097-966X
2168-0159
language eng
recordid cdi_proquest_journals_2845323483
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Attention mechanism CBAM
BiFPN
Feature extraction
Model accuracy
Object recognition
Road conditions
Small goal
SPPF
Target detection
Traffic information
YOLOV5
title P‐2.5: Research on real‐time performance of Road condition display for automatic driving
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P%E2%80%902.5:%20Research%20on%20real%E2%80%90time%20performance%20of%20Road%20condition%20display%20for%20automatic%20driving&rft.jtitle=SID%20International%20Symposium%20Digest%20of%20technical%20papers&rft.au=Dai,%20Zhenzhao&rft.date=2023-04&rft.volume=54&rft.issue=S1&rft.spage=491&rft.epage=497&rft.pages=491-497&rft.issn=0097-966X&rft.eissn=2168-0159&rft_id=info:doi/10.1002/sdtp.16339&rft_dat=%3Cproquest_cross%3E2845323483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845323483&rft_id=info:pmid/&rfr_iscdi=true