Projective varieties with nef tangent bundle in positive characteristic

Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2023-09, Vol.159 (9), p.1974-1999
Hauptverfasser: Kanemitsu, Akihiro, Watanabe, Kiwamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1999
container_issue 9
container_start_page 1974
container_title Compositio mathematica
container_volume 159
creator Kanemitsu, Akihiro
Watanabe, Kiwamu
description Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.
doi_str_mv 10.1112/S0010437X23007376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2845016321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X23007376</cupid><sourcerecordid>2845016321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f10f8cfe197a396ec7ae758cce3a7839defdaf2e0d967f3af0f9d73e4f875a863</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoOFY_wF3A9ehLMpNkllK0CgUFFdwNaealzdDO1CRT8e9tbcGFuHqLe859cAm5ZHDNGOM3LwAMCqHeuQBQQskjkrFSQV7qQh6TbBfnu_yUnMXYAgDXXGdk8hz6Fm3yG6QbEzwmj5F--rSgHTqaTDfHLtHZ0DVLpL6j6z76H9ouTDA2YfAxeXtOTpxZRrw43BF5u797HT_k06fJ4_h2mlshIeWOgdPWIauUEZVEqwyqUluLwigtqgZdYxxHaCqpnDAOXNUogYXTqjRaihG52veuQ_8xYEx12w-h276suS5KYFJwtqXYnrKhjzGgq9fBr0z4qhnUu73qP3ttHXFwzGoWfDPH3-r_rW9byG44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845016321</pqid></control><display><type>article</type><title>Projective varieties with nef tangent bundle in positive characteristic</title><source>Cambridge University Press Journals Complete</source><creator>Kanemitsu, Akihiro ; Watanabe, Kiwamu</creator><creatorcontrib>Kanemitsu, Akihiro ; Watanabe, Kiwamu</creatorcontrib><description>Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X23007376</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Decomposition</subject><ispartof>Compositio mathematica, 2023-09, Vol.159 (9), p.1974-1999</ispartof><rights>2023 The Author(s)</rights><rights>2023 The Author(s). This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f10f8cfe197a396ec7ae758cce3a7839defdaf2e0d967f3af0f9d73e4f875a863</citedby><cites>FETCH-LOGICAL-c360t-f10f8cfe197a396ec7ae758cce3a7839defdaf2e0d967f3af0f9d73e4f875a863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X23007376/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Kanemitsu, Akihiro</creatorcontrib><creatorcontrib>Watanabe, Kiwamu</creatorcontrib><title>Projective varieties with nef tangent bundle in positive characteristic</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.</description><subject>Decomposition</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKAzEURYMoOFY_wF3A9ehLMpNkllK0CgUFFdwNaealzdDO1CRT8e9tbcGFuHqLe859cAm5ZHDNGOM3LwAMCqHeuQBQQskjkrFSQV7qQh6TbBfnu_yUnMXYAgDXXGdk8hz6Fm3yG6QbEzwmj5F--rSgHTqaTDfHLtHZ0DVLpL6j6z76H9ouTDA2YfAxeXtOTpxZRrw43BF5u797HT_k06fJ4_h2mlshIeWOgdPWIauUEZVEqwyqUluLwigtqgZdYxxHaCqpnDAOXNUogYXTqjRaihG52veuQ_8xYEx12w-h276suS5KYFJwtqXYnrKhjzGgq9fBr0z4qhnUu73qP3ttHXFwzGoWfDPH3-r_rW9byG44</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kanemitsu, Akihiro</creator><creator>Watanabe, Kiwamu</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230901</creationdate><title>Projective varieties with nef tangent bundle in positive characteristic</title><author>Kanemitsu, Akihiro ; Watanabe, Kiwamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f10f8cfe197a396ec7ae758cce3a7839defdaf2e0d967f3af0f9d73e4f875a863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanemitsu, Akihiro</creatorcontrib><creatorcontrib>Watanabe, Kiwamu</creatorcontrib><collection>Cambridge University Press - Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanemitsu, Akihiro</au><au>Watanabe, Kiwamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projective varieties with nef tangent bundle in positive characteristic</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>159</volume><issue>9</issue><spage>1974</spage><epage>1999</epage><pages>1974-1999</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X23007376</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2023-09, Vol.159 (9), p.1974-1999
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_2845016321
source Cambridge University Press Journals Complete
subjects Decomposition
title Projective varieties with nef tangent bundle in positive characteristic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projective%20varieties%20with%20nef%20tangent%20bundle%20in%20positive%20characteristic&rft.jtitle=Compositio%20mathematica&rft.au=Kanemitsu,%20Akihiro&rft.date=2023-09-01&rft.volume=159&rft.issue=9&rft.spage=1974&rft.epage=1999&rft.pages=1974-1999&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X23007376&rft_dat=%3Cproquest_cross%3E2845016321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845016321&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X23007376&rfr_iscdi=true