Absolute continuity, supports and idempotent splitting in categorical probability

Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accommodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental results such as the Hewitt-Savage 0/1 La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
Hauptverfasser: Fritz, Tobias, Gonda, Tomáš, Lorenzin, Antonio, Perrone, Paolo, Stein, Dario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fritz, Tobias
Gonda, Tomáš
Lorenzin, Antonio
Perrone, Paolo
Stein, Dario
description Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accommodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental results such as the Hewitt-Savage 0/1 Law, the de Finetti Theorem and the Ergodic Decomposition Theorem. In this work, we develop additional relevant notions from probability theory in the setting of Markov categories. This comprises improved versions of previously introduced definitions of absolute continuity and supports, as well as a detailed study of idempotents and idempotent splitting in Markov categories. Our main result on idempotent splitting is that every idempotent measurable Markov kernel between standard Borel spaces splits through another standard Borel space, and we derive this as an instance of a general categorical criterion for idempotent splitting in Markov categories.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2844923548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844923548</sourcerecordid><originalsourceid>FETCH-proquest_journals_28449235483</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPzxwtVCTVOsoorgK7iVtY0mJScx7Gfr3dvADnO5wz4JlXIh9UUvOVyxHHMuy5IcjryqRsce5RW8Taei8I-OSoWkHmELwkRCU68H0-h08aUeAwRqa1QDGQadIDz6aTlkI0beqNfOdNmz5UhZ1_uuabW_X5-VezOaTNFIz-hTdvBpeS3niopK1-E99AWBGQMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844923548</pqid></control><display><type>article</type><title>Absolute continuity, supports and idempotent splitting in categorical probability</title><source>Free E- Journals</source><creator>Fritz, Tobias ; Gonda, Tomáš ; Lorenzin, Antonio ; Perrone, Paolo ; Stein, Dario</creator><creatorcontrib>Fritz, Tobias ; Gonda, Tomáš ; Lorenzin, Antonio ; Perrone, Paolo ; Stein, Dario</creatorcontrib><description>Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accommodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental results such as the Hewitt-Savage 0/1 Law, the de Finetti Theorem and the Ergodic Decomposition Theorem. In this work, we develop additional relevant notions from probability theory in the setting of Markov categories. This comprises improved versions of previously introduced definitions of absolute continuity and supports, as well as a detailed study of idempotents and idempotent splitting in Markov categories. Our main result on idempotent splitting is that every idempotent measurable Markov kernel between standard Borel spaces splits through another standard Borel space, and we derive this as an instance of a general categorical criterion for idempotent splitting in Markov categories.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Categories ; Conditional probability ; Continuity ; Probability theory ; Splitting ; Theorems</subject><ispartof>arXiv.org, 2023-09</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fritz, Tobias</creatorcontrib><creatorcontrib>Gonda, Tomáš</creatorcontrib><creatorcontrib>Lorenzin, Antonio</creatorcontrib><creatorcontrib>Perrone, Paolo</creatorcontrib><creatorcontrib>Stein, Dario</creatorcontrib><title>Absolute continuity, supports and idempotent splitting in categorical probability</title><title>arXiv.org</title><description>Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accommodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental results such as the Hewitt-Savage 0/1 Law, the de Finetti Theorem and the Ergodic Decomposition Theorem. In this work, we develop additional relevant notions from probability theory in the setting of Markov categories. This comprises improved versions of previously introduced definitions of absolute continuity and supports, as well as a detailed study of idempotents and idempotent splitting in Markov categories. Our main result on idempotent splitting is that every idempotent measurable Markov kernel between standard Borel spaces splits through another standard Borel space, and we derive this as an instance of a general categorical criterion for idempotent splitting in Markov categories.</description><subject>Categories</subject><subject>Conditional probability</subject><subject>Continuity</subject><subject>Probability theory</subject><subject>Splitting</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPzxwtVCTVOsoorgK7iVtY0mJScx7Gfr3dvADnO5wz4JlXIh9UUvOVyxHHMuy5IcjryqRsce5RW8Taei8I-OSoWkHmELwkRCU68H0-h08aUeAwRqa1QDGQadIDz6aTlkI0beqNfOdNmz5UhZ1_uuabW_X5-VezOaTNFIz-hTdvBpeS3niopK1-E99AWBGQMk</recordid><startdate>20230906</startdate><enddate>20230906</enddate><creator>Fritz, Tobias</creator><creator>Gonda, Tomáš</creator><creator>Lorenzin, Antonio</creator><creator>Perrone, Paolo</creator><creator>Stein, Dario</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230906</creationdate><title>Absolute continuity, supports and idempotent splitting in categorical probability</title><author>Fritz, Tobias ; Gonda, Tomáš ; Lorenzin, Antonio ; Perrone, Paolo ; Stein, Dario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28449235483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Categories</topic><topic>Conditional probability</topic><topic>Continuity</topic><topic>Probability theory</topic><topic>Splitting</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Fritz, Tobias</creatorcontrib><creatorcontrib>Gonda, Tomáš</creatorcontrib><creatorcontrib>Lorenzin, Antonio</creatorcontrib><creatorcontrib>Perrone, Paolo</creatorcontrib><creatorcontrib>Stein, Dario</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritz, Tobias</au><au>Gonda, Tomáš</au><au>Lorenzin, Antonio</au><au>Perrone, Paolo</au><au>Stein, Dario</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Absolute continuity, supports and idempotent splitting in categorical probability</atitle><jtitle>arXiv.org</jtitle><date>2023-09-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accommodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental results such as the Hewitt-Savage 0/1 Law, the de Finetti Theorem and the Ergodic Decomposition Theorem. In this work, we develop additional relevant notions from probability theory in the setting of Markov categories. This comprises improved versions of previously introduced definitions of absolute continuity and supports, as well as a detailed study of idempotents and idempotent splitting in Markov categories. Our main result on idempotent splitting is that every idempotent measurable Markov kernel between standard Borel spaces splits through another standard Borel space, and we derive this as an instance of a general categorical criterion for idempotent splitting in Markov categories.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2844923548
source Free E- Journals
subjects Categories
Conditional probability
Continuity
Probability theory
Splitting
Theorems
title Absolute continuity, supports and idempotent splitting in categorical probability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Absolute%20continuity,%20supports%20and%20idempotent%20splitting%20in%20categorical%20probability&rft.jtitle=arXiv.org&rft.au=Fritz,%20Tobias&rft.date=2023-09-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2844923548%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844923548&rft_id=info:pmid/&rfr_iscdi=true