Real-Time Phase Compensation for Scale Factor Nonlinearity Improvement Over Temperature Variations for MEMS Gyroscope
High-performance MEMS gyroscope puts forward the higher request to the scale factor nonlinearity especially in variable-temperature environment. The scale factor nonlinearity over full temperature range rarely studies. In this paper, we focuses on the scale factor nonlinearity over full temperature...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2023-08, Vol.32 (4), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Journal of microelectromechanical systems |
container_volume | 32 |
creator | Kuang, Yunbin Hou, Zhanqiang Liu, Gao Xiao, Dingbang Wu, Xuezhong |
description | High-performance MEMS gyroscope puts forward the higher request to the scale factor nonlinearity especially in variable-temperature environment. The scale factor nonlinearity over full temperature range rarely studies. In this paper, we focuses on the scale factor nonlinearity over full temperature range. The variations of the scale factor nonlinearity as the temperature were tested based on the MEMS butterfly gyroscope. The experimental results showed the U-shape curve of the output rate error so that the scale factor nonlinearity got large. The theoretical model of the scale factor was built and the phase error was found to be responsible for the U-shape error curve. Meanwhile, the phase error was identified to be variable over full temperature range experimentally, which meant it was critical to compensate the phase error in real time for improving the scale factor nonlinearity over full temperature range. A novel close-loop phase compensation system was designed by introducing a disturbance signal and experiments showed phase error was compensated in real time. After real-time phase compensation, the U-shape curve of the output rate error was eliminated and the scale factor nonlinearity decreased by about 10 times from 212.5 ppm to 19.5 ppm at the temperature ranged from - 40 ^{\circ}C to 80 ^{\circ}C , which reached an excellent level for the rate MEMS gyroscopes.2023-0006 |
doi_str_mv | 10.1109/JMEMS.2023.3279653 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2844902546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10145785</ieee_id><sourcerecordid>2844902546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-77fc7362a1194533f2419e8e000e58b32b27c9a1b08369fc68e770ac04fa5da83</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhCMEEqXwBxAHS5xT_IydI6raUtRSRAtXyzUbkSqJi51U6r_HfRw4eS3NNzs7SXJP8IAQnD-9zkfz5YBiygaMyjwT7CLpkZyTFBOhLuOMhUwlEfI6uQlhgzHhXGW9pPsAU6Wrsgb0_mMCoKGrt9AE05auQYXzaGlNBWhsbBs_b66pygaML9s9mtZb73ZQQ9OixQ48WkFkvWk7D-grao4m4ehyyIcme--CdVu4Ta4KUwW4O7_95HM8Wg1f0tliMh0-z1JL86xNpSysZBk1JJ4iGCsoJzkowBiDUGtG11Ta3JA1VizLC5spkBIbi3lhxLdRrJ88nnxj0N8OQqs3rvNNXKmp4jzHVPAsquhJZWO84KHQW1_Wxu81wfpQrz7Wqw_16nO9EXo4QSUA_AMIF1IJ9gcpvHdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844902546</pqid></control><display><type>article</type><title>Real-Time Phase Compensation for Scale Factor Nonlinearity Improvement Over Temperature Variations for MEMS Gyroscope</title><source>IEEE Electronic Library (IEL)</source><creator>Kuang, Yunbin ; Hou, Zhanqiang ; Liu, Gao ; Xiao, Dingbang ; Wu, Xuezhong</creator><creatorcontrib>Kuang, Yunbin ; Hou, Zhanqiang ; Liu, Gao ; Xiao, Dingbang ; Wu, Xuezhong</creatorcontrib><description><![CDATA[High-performance MEMS gyroscope puts forward the higher request to the scale factor nonlinearity especially in variable-temperature environment. The scale factor nonlinearity over full temperature range rarely studies. In this paper, we focuses on the scale factor nonlinearity over full temperature range. The variations of the scale factor nonlinearity as the temperature were tested based on the MEMS butterfly gyroscope. The experimental results showed the U-shape curve of the output rate error so that the scale factor nonlinearity got large. The theoretical model of the scale factor was built and the phase error was found to be responsible for the U-shape error curve. Meanwhile, the phase error was identified to be variable over full temperature range experimentally, which meant it was critical to compensate the phase error in real time for improving the scale factor nonlinearity over full temperature range. A novel close-loop phase compensation system was designed by introducing a disturbance signal and experiments showed phase error was compensated in real time. After real-time phase compensation, the U-shape curve of the output rate error was eliminated and the scale factor nonlinearity decreased by about 10 times from 212.5<inline-formula> <tex-math notation="LaTeX">ppm</tex-math> </inline-formula> to 19.5<inline-formula> <tex-math notation="LaTeX">ppm</tex-math> </inline-formula> at the temperature ranged from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>40<inline-formula> <tex-math notation="LaTeX">^{\circ}C</tex-math> </inline-formula> to 80<inline-formula> <tex-math notation="LaTeX">^{\circ}C</tex-math> </inline-formula>, which reached an excellent level for the rate MEMS gyroscopes.2023-0006]]></description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2023.3279653</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensation ; Couplings ; Gyroscopes ; MEMS gyroscope ; Micromechanical devices ; Nonlinearity ; Parasitic capacitance ; Phase error ; Real time ; real-time phase compensation ; Real-time systems ; scale factor nonlinearity ; Sensors ; Temperature distribution ; temperature variations</subject><ispartof>Journal of microelectromechanical systems, 2023-08, Vol.32 (4), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-77fc7362a1194533f2419e8e000e58b32b27c9a1b08369fc68e770ac04fa5da83</citedby><cites>FETCH-LOGICAL-c296t-77fc7362a1194533f2419e8e000e58b32b27c9a1b08369fc68e770ac04fa5da83</cites><orcidid>0000-0002-5169-1863 ; 0000-0002-1591-7220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10145785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10145785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuang, Yunbin</creatorcontrib><creatorcontrib>Hou, Zhanqiang</creatorcontrib><creatorcontrib>Liu, Gao</creatorcontrib><creatorcontrib>Xiao, Dingbang</creatorcontrib><creatorcontrib>Wu, Xuezhong</creatorcontrib><title>Real-Time Phase Compensation for Scale Factor Nonlinearity Improvement Over Temperature Variations for MEMS Gyroscope</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description><![CDATA[High-performance MEMS gyroscope puts forward the higher request to the scale factor nonlinearity especially in variable-temperature environment. The scale factor nonlinearity over full temperature range rarely studies. In this paper, we focuses on the scale factor nonlinearity over full temperature range. The variations of the scale factor nonlinearity as the temperature were tested based on the MEMS butterfly gyroscope. The experimental results showed the U-shape curve of the output rate error so that the scale factor nonlinearity got large. The theoretical model of the scale factor was built and the phase error was found to be responsible for the U-shape error curve. Meanwhile, the phase error was identified to be variable over full temperature range experimentally, which meant it was critical to compensate the phase error in real time for improving the scale factor nonlinearity over full temperature range. A novel close-loop phase compensation system was designed by introducing a disturbance signal and experiments showed phase error was compensated in real time. After real-time phase compensation, the U-shape curve of the output rate error was eliminated and the scale factor nonlinearity decreased by about 10 times from 212.5<inline-formula> <tex-math notation="LaTeX">ppm</tex-math> </inline-formula> to 19.5<inline-formula> <tex-math notation="LaTeX">ppm</tex-math> </inline-formula> at the temperature ranged from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>40<inline-formula> <tex-math notation="LaTeX">^{\circ}C</tex-math> </inline-formula> to 80<inline-formula> <tex-math notation="LaTeX">^{\circ}C</tex-math> </inline-formula>, which reached an excellent level for the rate MEMS gyroscopes.2023-0006]]></description><subject>Compensation</subject><subject>Couplings</subject><subject>Gyroscopes</subject><subject>MEMS gyroscope</subject><subject>Micromechanical devices</subject><subject>Nonlinearity</subject><subject>Parasitic capacitance</subject><subject>Phase error</subject><subject>Real time</subject><subject>real-time phase compensation</subject><subject>Real-time systems</subject><subject>scale factor nonlinearity</subject><subject>Sensors</subject><subject>Temperature distribution</subject><subject>temperature variations</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwzAQhCMEEqXwBxAHS5xT_IydI6raUtRSRAtXyzUbkSqJi51U6r_HfRw4eS3NNzs7SXJP8IAQnD-9zkfz5YBiygaMyjwT7CLpkZyTFBOhLuOMhUwlEfI6uQlhgzHhXGW9pPsAU6Wrsgb0_mMCoKGrt9AE05auQYXzaGlNBWhsbBs_b66pygaML9s9mtZb73ZQQ9OixQ48WkFkvWk7D-grao4m4ehyyIcme--CdVu4Ta4KUwW4O7_95HM8Wg1f0tliMh0-z1JL86xNpSysZBk1JJ4iGCsoJzkowBiDUGtG11Ta3JA1VizLC5spkBIbi3lhxLdRrJ88nnxj0N8OQqs3rvNNXKmp4jzHVPAsquhJZWO84KHQW1_Wxu81wfpQrz7Wqw_16nO9EXo4QSUA_AMIF1IJ9gcpvHdc</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Kuang, Yunbin</creator><creator>Hou, Zhanqiang</creator><creator>Liu, Gao</creator><creator>Xiao, Dingbang</creator><creator>Wu, Xuezhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5169-1863</orcidid><orcidid>https://orcid.org/0000-0002-1591-7220</orcidid></search><sort><creationdate>20230801</creationdate><title>Real-Time Phase Compensation for Scale Factor Nonlinearity Improvement Over Temperature Variations for MEMS Gyroscope</title><author>Kuang, Yunbin ; Hou, Zhanqiang ; Liu, Gao ; Xiao, Dingbang ; Wu, Xuezhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-77fc7362a1194533f2419e8e000e58b32b27c9a1b08369fc68e770ac04fa5da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compensation</topic><topic>Couplings</topic><topic>Gyroscopes</topic><topic>MEMS gyroscope</topic><topic>Micromechanical devices</topic><topic>Nonlinearity</topic><topic>Parasitic capacitance</topic><topic>Phase error</topic><topic>Real time</topic><topic>real-time phase compensation</topic><topic>Real-time systems</topic><topic>scale factor nonlinearity</topic><topic>Sensors</topic><topic>Temperature distribution</topic><topic>temperature variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuang, Yunbin</creatorcontrib><creatorcontrib>Hou, Zhanqiang</creatorcontrib><creatorcontrib>Liu, Gao</creatorcontrib><creatorcontrib>Xiao, Dingbang</creatorcontrib><creatorcontrib>Wu, Xuezhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuang, Yunbin</au><au>Hou, Zhanqiang</au><au>Liu, Gao</au><au>Xiao, Dingbang</au><au>Wu, Xuezhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Phase Compensation for Scale Factor Nonlinearity Improvement Over Temperature Variations for MEMS Gyroscope</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>32</volume><issue>4</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract><![CDATA[High-performance MEMS gyroscope puts forward the higher request to the scale factor nonlinearity especially in variable-temperature environment. The scale factor nonlinearity over full temperature range rarely studies. In this paper, we focuses on the scale factor nonlinearity over full temperature range. The variations of the scale factor nonlinearity as the temperature were tested based on the MEMS butterfly gyroscope. The experimental results showed the U-shape curve of the output rate error so that the scale factor nonlinearity got large. The theoretical model of the scale factor was built and the phase error was found to be responsible for the U-shape error curve. Meanwhile, the phase error was identified to be variable over full temperature range experimentally, which meant it was critical to compensate the phase error in real time for improving the scale factor nonlinearity over full temperature range. A novel close-loop phase compensation system was designed by introducing a disturbance signal and experiments showed phase error was compensated in real time. After real-time phase compensation, the U-shape curve of the output rate error was eliminated and the scale factor nonlinearity decreased by about 10 times from 212.5<inline-formula> <tex-math notation="LaTeX">ppm</tex-math> </inline-formula> to 19.5<inline-formula> <tex-math notation="LaTeX">ppm</tex-math> </inline-formula> at the temperature ranged from <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>40<inline-formula> <tex-math notation="LaTeX">^{\circ}C</tex-math> </inline-formula> to 80<inline-formula> <tex-math notation="LaTeX">^{\circ}C</tex-math> </inline-formula>, which reached an excellent level for the rate MEMS gyroscopes.2023-0006]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2023.3279653</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5169-1863</orcidid><orcidid>https://orcid.org/0000-0002-1591-7220</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2023-08, Vol.32 (4), p.1-9 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_proquest_journals_2844902546 |
source | IEEE Electronic Library (IEL) |
subjects | Compensation Couplings Gyroscopes MEMS gyroscope Micromechanical devices Nonlinearity Parasitic capacitance Phase error Real time real-time phase compensation Real-time systems scale factor nonlinearity Sensors Temperature distribution temperature variations |
title | Real-Time Phase Compensation for Scale Factor Nonlinearity Improvement Over Temperature Variations for MEMS Gyroscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Phase%20Compensation%20for%20Scale%20Factor%20Nonlinearity%20Improvement%20Over%20Temperature%20Variations%20for%20MEMS%20Gyroscope&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Kuang,%20Yunbin&rft.date=2023-08-01&rft.volume=32&rft.issue=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2023.3279653&rft_dat=%3Cproquest_RIE%3E2844902546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844902546&rft_id=info:pmid/&rft_ieee_id=10145785&rfr_iscdi=true |