One for More: Sparse Group Lasso for Multitarget Device-Free Localization With Single-Target Fingerprint Database Under RFID System

Device-free localization (DFL) has become a hot spot in the field of indoor localization in recent years since DFL does not need the target to be localized to carry a device. Fingerprinting is a data-driven approach and does not require line-of-sight propagation. However, the problem is that the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-08, Vol.23 (15), p.17510-17523
Hauptverfasser: Ning, Wanru, Ma, Yongtao, Liang, Xiuyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17523
container_issue 15
container_start_page 17510
container_title IEEE sensors journal
container_volume 23
creator Ning, Wanru
Ma, Yongtao
Liang, Xiuyan
description Device-free localization (DFL) has become a hot spot in the field of indoor localization in recent years since DFL does not need the target to be localized to carry a device. Fingerprinting is a data-driven approach and does not require line-of-sight propagation. However, the problem is that the complexity of the fingerprint database exponentially increases with the number of targets. This makes the fingerprinting-based multitarget DFL a complex problem. In this article, we propose a sparse group lasso-based DFL (SGL-DFL) scheme to realize multitarget DFL with a traditional single-target fingerprint database. SGL-DFL contains two phases: in the phase of fuzzy coarse localization, we use a weighted voting method to generate a heatmap. Taking the local maximums as group centers, we propose a simultaneous outlier elimination and grouping scheme to obtain several groups of possible reference fingerprints. The average hot value of each group is used to evaluate the likelihood that the target exists in each group. In the phase of fine localization, the multitarget DFL is formulated as a multicomponent optimization technique in the form of sparse group lasso. Compared with existing fingerprinting-based multitarget DFL, SGL-DFL not only considers the collective influence of multiple targets on wireless signals but also considers the fingerprint matching degree of each target. Moreover, SGL-DFL does not need to know the location of the communication node. Experimental evaluations in a [Formula Omitted] m area in an indoor warehouse environment achieved the mean distance error of 0.85, 1.40, and 1.45 m for two-, three-, and four-target localizations, respectively.
doi_str_mv 10.1109/JSEN.2023.3290359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844901868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844901868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-292d063caf748e08f8099ab095a8315f320bfd7eb2b79cb79025652c99107cc43</originalsourceid><addsrcrecordid>eNotkE1Pg0AQhonRxFr9Ad428UzdD7aw3kwrtQZtIm30RpbtUGkoi7uLSb36x4XQw2RmMu98PZ53S_CEECzuX9KntwnFlE0YFZhxceaNCOeRT8IgOu9jhv2AhZ-X3pW1e4yJCHk48v5WNaBCG_SqDTygtJHGAloY3TYokdbqodhWrnTS7MChOfyUCvzYAKBEK1mVv9KVukYfpftCaVnvKvDXgzbuMjCNKeuuTzqZy274pt6CQe_xco7So3VwuPYuCllZuDn5sbeJn9azZz9ZLZazx8RXlHLnU0G3eMqULLqXAEdFhIWQORZcRozwglGcF9sQcpqHQnWGKZ9yqoQgOFQqYGPvbpjbGP3dgnXZXrem7lZmNAoCgUk0jToVGVTKaGsNFFl3_0GaY0Zw1rPOetZZzzo7sWb_nx5yAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844901868</pqid></control><display><type>article</type><title>One for More: Sparse Group Lasso for Multitarget Device-Free Localization With Single-Target Fingerprint Database Under RFID System</title><source>IEEE Electronic Library (IEL)</source><creator>Ning, Wanru ; Ma, Yongtao ; Liang, Xiuyan</creator><creatorcontrib>Ning, Wanru ; Ma, Yongtao ; Liang, Xiuyan</creatorcontrib><description>Device-free localization (DFL) has become a hot spot in the field of indoor localization in recent years since DFL does not need the target to be localized to carry a device. Fingerprinting is a data-driven approach and does not require line-of-sight propagation. However, the problem is that the complexity of the fingerprint database exponentially increases with the number of targets. This makes the fingerprinting-based multitarget DFL a complex problem. In this article, we propose a sparse group lasso-based DFL (SGL-DFL) scheme to realize multitarget DFL with a traditional single-target fingerprint database. SGL-DFL contains two phases: in the phase of fuzzy coarse localization, we use a weighted voting method to generate a heatmap. Taking the local maximums as group centers, we propose a simultaneous outlier elimination and grouping scheme to obtain several groups of possible reference fingerprints. The average hot value of each group is used to evaluate the likelihood that the target exists in each group. In the phase of fine localization, the multitarget DFL is formulated as a multicomponent optimization technique in the form of sparse group lasso. Compared with existing fingerprinting-based multitarget DFL, SGL-DFL not only considers the collective influence of multiple targets on wireless signals but also considers the fingerprint matching degree of each target. Moreover, SGL-DFL does not need to know the location of the communication node. Experimental evaluations in a [Formula Omitted] m area in an indoor warehouse environment achieved the mean distance error of 0.85, 1.40, and 1.45 m for two-, three-, and four-target localizations, respectively.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3290359</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Complexity ; Fingerprinting ; Fingerprints ; Indoor environments ; Localization ; Multiple target tracking ; Optimization ; Optimization techniques ; Outliers (statistics)</subject><ispartof>IEEE sensors journal, 2023-08, Vol.23 (15), p.17510-17523</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-292d063caf748e08f8099ab095a8315f320bfd7eb2b79cb79025652c99107cc43</cites><orcidid>0000-0001-6706-1981 ; 0000-0001-6240-5749 ; 0000-0003-4844-632X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ning, Wanru</creatorcontrib><creatorcontrib>Ma, Yongtao</creatorcontrib><creatorcontrib>Liang, Xiuyan</creatorcontrib><title>One for More: Sparse Group Lasso for Multitarget Device-Free Localization With Single-Target Fingerprint Database Under RFID System</title><title>IEEE sensors journal</title><description>Device-free localization (DFL) has become a hot spot in the field of indoor localization in recent years since DFL does not need the target to be localized to carry a device. Fingerprinting is a data-driven approach and does not require line-of-sight propagation. However, the problem is that the complexity of the fingerprint database exponentially increases with the number of targets. This makes the fingerprinting-based multitarget DFL a complex problem. In this article, we propose a sparse group lasso-based DFL (SGL-DFL) scheme to realize multitarget DFL with a traditional single-target fingerprint database. SGL-DFL contains two phases: in the phase of fuzzy coarse localization, we use a weighted voting method to generate a heatmap. Taking the local maximums as group centers, we propose a simultaneous outlier elimination and grouping scheme to obtain several groups of possible reference fingerprints. The average hot value of each group is used to evaluate the likelihood that the target exists in each group. In the phase of fine localization, the multitarget DFL is formulated as a multicomponent optimization technique in the form of sparse group lasso. Compared with existing fingerprinting-based multitarget DFL, SGL-DFL not only considers the collective influence of multiple targets on wireless signals but also considers the fingerprint matching degree of each target. Moreover, SGL-DFL does not need to know the location of the communication node. Experimental evaluations in a [Formula Omitted] m area in an indoor warehouse environment achieved the mean distance error of 0.85, 1.40, and 1.45 m for two-, three-, and four-target localizations, respectively.</description><subject>Complexity</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Indoor environments</subject><subject>Localization</subject><subject>Multiple target tracking</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Outliers (statistics)</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1Pg0AQhonRxFr9Ad428UzdD7aw3kwrtQZtIm30RpbtUGkoi7uLSb36x4XQw2RmMu98PZ53S_CEECzuX9KntwnFlE0YFZhxceaNCOeRT8IgOu9jhv2AhZ-X3pW1e4yJCHk48v5WNaBCG_SqDTygtJHGAloY3TYokdbqodhWrnTS7MChOfyUCvzYAKBEK1mVv9KVukYfpftCaVnvKvDXgzbuMjCNKeuuTzqZy274pt6CQe_xco7So3VwuPYuCllZuDn5sbeJn9azZz9ZLZazx8RXlHLnU0G3eMqULLqXAEdFhIWQORZcRozwglGcF9sQcpqHQnWGKZ9yqoQgOFQqYGPvbpjbGP3dgnXZXrem7lZmNAoCgUk0jToVGVTKaGsNFFl3_0GaY0Zw1rPOetZZzzo7sWb_nx5yAQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Ning, Wanru</creator><creator>Ma, Yongtao</creator><creator>Liang, Xiuyan</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6706-1981</orcidid><orcidid>https://orcid.org/0000-0001-6240-5749</orcidid><orcidid>https://orcid.org/0000-0003-4844-632X</orcidid></search><sort><creationdate>20230801</creationdate><title>One for More: Sparse Group Lasso for Multitarget Device-Free Localization With Single-Target Fingerprint Database Under RFID System</title><author>Ning, Wanru ; Ma, Yongtao ; Liang, Xiuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-292d063caf748e08f8099ab095a8315f320bfd7eb2b79cb79025652c99107cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Complexity</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Indoor environments</topic><topic>Localization</topic><topic>Multiple target tracking</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Outliers (statistics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Wanru</creatorcontrib><creatorcontrib>Ma, Yongtao</creatorcontrib><creatorcontrib>Liang, Xiuyan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Wanru</au><au>Ma, Yongtao</au><au>Liang, Xiuyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One for More: Sparse Group Lasso for Multitarget Device-Free Localization With Single-Target Fingerprint Database Under RFID System</atitle><jtitle>IEEE sensors journal</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>23</volume><issue>15</issue><spage>17510</spage><epage>17523</epage><pages>17510-17523</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><abstract>Device-free localization (DFL) has become a hot spot in the field of indoor localization in recent years since DFL does not need the target to be localized to carry a device. Fingerprinting is a data-driven approach and does not require line-of-sight propagation. However, the problem is that the complexity of the fingerprint database exponentially increases with the number of targets. This makes the fingerprinting-based multitarget DFL a complex problem. In this article, we propose a sparse group lasso-based DFL (SGL-DFL) scheme to realize multitarget DFL with a traditional single-target fingerprint database. SGL-DFL contains two phases: in the phase of fuzzy coarse localization, we use a weighted voting method to generate a heatmap. Taking the local maximums as group centers, we propose a simultaneous outlier elimination and grouping scheme to obtain several groups of possible reference fingerprints. The average hot value of each group is used to evaluate the likelihood that the target exists in each group. In the phase of fine localization, the multitarget DFL is formulated as a multicomponent optimization technique in the form of sparse group lasso. Compared with existing fingerprinting-based multitarget DFL, SGL-DFL not only considers the collective influence of multiple targets on wireless signals but also considers the fingerprint matching degree of each target. Moreover, SGL-DFL does not need to know the location of the communication node. Experimental evaluations in a [Formula Omitted] m area in an indoor warehouse environment achieved the mean distance error of 0.85, 1.40, and 1.45 m for two-, three-, and four-target localizations, respectively.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSEN.2023.3290359</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6706-1981</orcidid><orcidid>https://orcid.org/0000-0001-6240-5749</orcidid><orcidid>https://orcid.org/0000-0003-4844-632X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-08, Vol.23 (15), p.17510-17523
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2844901868
source IEEE Electronic Library (IEL)
subjects Complexity
Fingerprinting
Fingerprints
Indoor environments
Localization
Multiple target tracking
Optimization
Optimization techniques
Outliers (statistics)
title One for More: Sparse Group Lasso for Multitarget Device-Free Localization With Single-Target Fingerprint Database Under RFID System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20for%20More:%20Sparse%20Group%20Lasso%20for%20Multitarget%20Device-Free%20Localization%20With%20Single-Target%20Fingerprint%20Database%20Under%20RFID%20System&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ning,%20Wanru&rft.date=2023-08-01&rft.volume=23&rft.issue=15&rft.spage=17510&rft.epage=17523&rft.pages=17510-17523&rft.issn=1530-437X&rft.eissn=1558-1748&rft_id=info:doi/10.1109/JSEN.2023.3290359&rft_dat=%3Cproquest_cross%3E2844901868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844901868&rft_id=info:pmid/&rfr_iscdi=true