A Deep Reinforcement Learning-based Two-dimensional Resource Allocation Technique for V2I communications
This paper proposes a two-dimensional resource allocation technique for vehicle-to-infrastructure (V2I) communications. Vehicular communications requires high data rates, low latency, and reliability simultaneously. The 3rd generation partnership project (3GPP) included various numerologies to suppo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Jin, Heetae Seo, Jeongbin Park, Jeonghun Kim, Suk Chan |
description | This paper proposes a two-dimensional resource allocation technique for vehicle-to-infrastructure (V2I) communications. Vehicular communications requires high data rates, low latency, and reliability simultaneously. The 3rd generation partnership project (3GPP) included various numerologies to support this, leading to diversification of transmit time interval (TTI). It enables the two-dimensional resource allocation that considers time and frequency simultaneously, which has yet to be studied much. To tackle this issue, we propose a reinforcement learning approach to solve the two-dimensional resource allocation problem for V2I communications. A reinforcement learning agent in a base station allocates a quality of service (QoS) guaranteed two-dimensional resource block to each vehicle to maximize the sum of achievable data quantity (ADQ). It exploits received power information and a resource occupancy status as input. It outputs vehicles' allocation information that consists of a time-frequency position, bandwidth, and TTI, which is a solution to the two-dimensional resource allocation. The simulation results show that the proposed method outperforms the fixed allocation method. Because of the ability to pursue ADQ maximization and QoS guarantee, the proposed method performs better than an optimization-based benchmark method if each vehicle has a QoS constraint. Also, we can see that the resource the agent selects according to the QoS constraint varies and maximizes the ADQ. |
doi_str_mv | 10.1109/ACCESS.2023.3298953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2844897462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10194918</ieee_id><doaj_id>oai_doaj_org_article_fe3212066a4a4818ae78a5c08962dbea</doaj_id><sourcerecordid>2844897462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-46b5e35d9cc17a7458010278141045e04b881ee9b854570dd65bd1a54c2393ad3</originalsourceid><addsrcrecordid>eNpNUV1rGzEQPEILMWl-QfsgyPM5-ryTHo3rJgZDoXHyKvakdSxzPjnSmdJ_X6UXivdFy-zMLKupqq-Mzhmj5n6xXK6enuaccjEX3GijxFU146wxtVCi-XTRX1e3OR9oKV0g1c6q_YJ8RzyRXxiGXUwOjziMZIOQhjC81h1k9GT7O9Y-lEkOcYC-kHM8Fy5Z9H10MBaUbNHth_B2RlJsyAtfExePx_MQpnn-Un3eQZ_x9uO9qZ5_rLbLx3rz82G9XGxqJ6kZa9l0CoXyxjnWQiuVpozyVjPJqFRIZac1QzSdVlK11PtGdZ6Bko4LI8CLm2o9-foIB3tK4Qjpj40Q7D8gplcLaQyuR7tDwRmnTQMSpGYasNWgHNWm4b5DKF53k9cpxXJZHu2h3F1-IFuupdSmlQ0vLDGxXIo5J9z938qofU_ITgnZ94TsR0JF9W1SBUS8UDAjDdPiL-FcjAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844897462</pqid></control><display><type>article</type><title>A Deep Reinforcement Learning-based Two-dimensional Resource Allocation Technique for V2I communications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jin, Heetae ; Seo, Jeongbin ; Park, Jeonghun ; Kim, Suk Chan</creator><creatorcontrib>Jin, Heetae ; Seo, Jeongbin ; Park, Jeonghun ; Kim, Suk Chan</creatorcontrib><description>This paper proposes a two-dimensional resource allocation technique for vehicle-to-infrastructure (V2I) communications. Vehicular communications requires high data rates, low latency, and reliability simultaneously. The 3rd generation partnership project (3GPP) included various numerologies to support this, leading to diversification of transmit time interval (TTI). It enables the two-dimensional resource allocation that considers time and frequency simultaneously, which has yet to be studied much. To tackle this issue, we propose a reinforcement learning approach to solve the two-dimensional resource allocation problem for V2I communications. A reinforcement learning agent in a base station allocates a quality of service (QoS) guaranteed two-dimensional resource block to each vehicle to maximize the sum of achievable data quantity (ADQ). It exploits received power information and a resource occupancy status as input. It outputs vehicles' allocation information that consists of a time-frequency position, bandwidth, and TTI, which is a solution to the two-dimensional resource allocation. The simulation results show that the proposed method outperforms the fixed allocation method. Because of the ability to pursue ADQ maximization and QoS guarantee, the proposed method performs better than an optimization-based benchmark method if each vehicle has a QoS constraint. Also, we can see that the resource the agent selects according to the QoS constraint varies and maximizes the ADQ.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3298953</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3GPP ; Deep learning ; Deep Reinforcement Learning ; Energy efficiency ; Low latency communication ; OFDM ; Optimization ; Quality of service ; Radio spectrum management ; Reinforcement learning ; Reliability ; Resource Allocation ; Resource management ; Time-frequency analysis ; Two dimensional displays ; V2X Communications ; Vehicle-to-infrastructure</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-46b5e35d9cc17a7458010278141045e04b881ee9b854570dd65bd1a54c2393ad3</citedby><cites>FETCH-LOGICAL-c409t-46b5e35d9cc17a7458010278141045e04b881ee9b854570dd65bd1a54c2393ad3</cites><orcidid>0000-0003-0627-8022 ; 0000-0002-5699-8565 ; 0000-0001-9675-1594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10194918$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Jin, Heetae</creatorcontrib><creatorcontrib>Seo, Jeongbin</creatorcontrib><creatorcontrib>Park, Jeonghun</creatorcontrib><creatorcontrib>Kim, Suk Chan</creatorcontrib><title>A Deep Reinforcement Learning-based Two-dimensional Resource Allocation Technique for V2I communications</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a two-dimensional resource allocation technique for vehicle-to-infrastructure (V2I) communications. Vehicular communications requires high data rates, low latency, and reliability simultaneously. The 3rd generation partnership project (3GPP) included various numerologies to support this, leading to diversification of transmit time interval (TTI). It enables the two-dimensional resource allocation that considers time and frequency simultaneously, which has yet to be studied much. To tackle this issue, we propose a reinforcement learning approach to solve the two-dimensional resource allocation problem for V2I communications. A reinforcement learning agent in a base station allocates a quality of service (QoS) guaranteed two-dimensional resource block to each vehicle to maximize the sum of achievable data quantity (ADQ). It exploits received power information and a resource occupancy status as input. It outputs vehicles' allocation information that consists of a time-frequency position, bandwidth, and TTI, which is a solution to the two-dimensional resource allocation. The simulation results show that the proposed method outperforms the fixed allocation method. Because of the ability to pursue ADQ maximization and QoS guarantee, the proposed method performs better than an optimization-based benchmark method if each vehicle has a QoS constraint. Also, we can see that the resource the agent selects according to the QoS constraint varies and maximizes the ADQ.</description><subject>3GPP</subject><subject>Deep learning</subject><subject>Deep Reinforcement Learning</subject><subject>Energy efficiency</subject><subject>Low latency communication</subject><subject>OFDM</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>Radio spectrum management</subject><subject>Reinforcement learning</subject><subject>Reliability</subject><subject>Resource Allocation</subject><subject>Resource management</subject><subject>Time-frequency analysis</subject><subject>Two dimensional displays</subject><subject>V2X Communications</subject><subject>Vehicle-to-infrastructure</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rGzEQPEILMWl-QfsgyPM5-ryTHo3rJgZDoXHyKvakdSxzPjnSmdJ_X6UXivdFy-zMLKupqq-Mzhmj5n6xXK6enuaccjEX3GijxFU146wxtVCi-XTRX1e3OR9oKV0g1c6q_YJ8RzyRXxiGXUwOjziMZIOQhjC81h1k9GT7O9Y-lEkOcYC-kHM8Fy5Z9H10MBaUbNHth_B2RlJsyAtfExePx_MQpnn-Un3eQZ_x9uO9qZ5_rLbLx3rz82G9XGxqJ6kZa9l0CoXyxjnWQiuVpozyVjPJqFRIZac1QzSdVlK11PtGdZ6Bko4LI8CLm2o9-foIB3tK4Qjpj40Q7D8gplcLaQyuR7tDwRmnTQMSpGYasNWgHNWm4b5DKF53k9cpxXJZHu2h3F1-IFuupdSmlQ0vLDGxXIo5J9z938qofU_ITgnZ94TsR0JF9W1SBUS8UDAjDdPiL-FcjAQ</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jin, Heetae</creator><creator>Seo, Jeongbin</creator><creator>Park, Jeonghun</creator><creator>Kim, Suk Chan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0627-8022</orcidid><orcidid>https://orcid.org/0000-0002-5699-8565</orcidid><orcidid>https://orcid.org/0000-0001-9675-1594</orcidid></search><sort><creationdate>20230101</creationdate><title>A Deep Reinforcement Learning-based Two-dimensional Resource Allocation Technique for V2I communications</title><author>Jin, Heetae ; Seo, Jeongbin ; Park, Jeonghun ; Kim, Suk Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-46b5e35d9cc17a7458010278141045e04b881ee9b854570dd65bd1a54c2393ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3GPP</topic><topic>Deep learning</topic><topic>Deep Reinforcement Learning</topic><topic>Energy efficiency</topic><topic>Low latency communication</topic><topic>OFDM</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>Radio spectrum management</topic><topic>Reinforcement learning</topic><topic>Reliability</topic><topic>Resource Allocation</topic><topic>Resource management</topic><topic>Time-frequency analysis</topic><topic>Two dimensional displays</topic><topic>V2X Communications</topic><topic>Vehicle-to-infrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Heetae</creatorcontrib><creatorcontrib>Seo, Jeongbin</creatorcontrib><creatorcontrib>Park, Jeonghun</creatorcontrib><creatorcontrib>Kim, Suk Chan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Heetae</au><au>Seo, Jeongbin</au><au>Park, Jeonghun</au><au>Kim, Suk Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Reinforcement Learning-based Two-dimensional Resource Allocation Technique for V2I communications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a two-dimensional resource allocation technique for vehicle-to-infrastructure (V2I) communications. Vehicular communications requires high data rates, low latency, and reliability simultaneously. The 3rd generation partnership project (3GPP) included various numerologies to support this, leading to diversification of transmit time interval (TTI). It enables the two-dimensional resource allocation that considers time and frequency simultaneously, which has yet to be studied much. To tackle this issue, we propose a reinforcement learning approach to solve the two-dimensional resource allocation problem for V2I communications. A reinforcement learning agent in a base station allocates a quality of service (QoS) guaranteed two-dimensional resource block to each vehicle to maximize the sum of achievable data quantity (ADQ). It exploits received power information and a resource occupancy status as input. It outputs vehicles' allocation information that consists of a time-frequency position, bandwidth, and TTI, which is a solution to the two-dimensional resource allocation. The simulation results show that the proposed method outperforms the fixed allocation method. Because of the ability to pursue ADQ maximization and QoS guarantee, the proposed method performs better than an optimization-based benchmark method if each vehicle has a QoS constraint. Also, we can see that the resource the agent selects according to the QoS constraint varies and maximizes the ADQ.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3298953</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0627-8022</orcidid><orcidid>https://orcid.org/0000-0002-5699-8565</orcidid><orcidid>https://orcid.org/0000-0001-9675-1594</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2844897462 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 3GPP Deep learning Deep Reinforcement Learning Energy efficiency Low latency communication OFDM Optimization Quality of service Radio spectrum management Reinforcement learning Reliability Resource Allocation Resource management Time-frequency analysis Two dimensional displays V2X Communications Vehicle-to-infrastructure |
title | A Deep Reinforcement Learning-based Two-dimensional Resource Allocation Technique for V2I communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Reinforcement%20Learning-based%20Two-dimensional%20Resource%20Allocation%20Technique%20for%20V2I%20communications&rft.jtitle=IEEE%20access&rft.au=Jin,%20Heetae&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3298953&rft_dat=%3Cproquest_doaj_%3E2844897462%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844897462&rft_id=info:pmid/&rft_ieee_id=10194918&rft_doaj_id=oai_doaj_org_article_fe3212066a4a4818ae78a5c08962dbea&rfr_iscdi=true |