Phase-Shedding Control in Two Parallel Interleaved Three-Phase ZVS Inverters for Improved Light Load Efficiency
The parallel interleaved three-phase inverters are suitable for high-power applications due to the current ripple canceling effect. The power density and efficiency can be further improved with the current ripple prediction (CRP) based high frequency zero-voltage switching (ZVS). However, the variab...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.77793-77801 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 77801 |
---|---|
container_issue | |
container_start_page | 77793 |
container_title | IEEE access |
container_volume | 11 |
creator | Xie, Rui Li, Hongke Lin, Bin Xu, Ouyang Wang, Xiaohe Han, Yanguo Chen, Jianliang Xin, Zhen |
description | The parallel interleaved three-phase inverters are suitable for high-power applications due to the current ripple canceling effect. The power density and efficiency can be further improved with the current ripple prediction (CRP) based high frequency zero-voltage switching (ZVS). However, the variable switching frequency increases rapidly as the power decrease, resulting in higher turn-off loss at light load despite the elimination of turn-on loss. In this paper, a phase-shedding control strategy is proposed along with the CRP based ZVS method to improve the light load efficiency. Only four phase-legs of the two parallel inverters operate at light load to reduce the switching frequency and the circulating current between the two clamping phase-legs. The proposed method can achieve full-range ZVS for all the switches without any auxiliary circuits or high frequency sensors. Current sharing can also be realized between the two clamping phase-legs based on accurate gate signal modulation. A 5 kW simulation and experimental prototype using SiC devices interfacing 400 V dc with three-phase 110 V ac grid is developed to verify the effectiveness of the proposed control strategy. |
doi_str_mv | 10.1109/ACCESS.2023.3298676 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2844897177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10194251</ieee_id><doaj_id>oai_doaj_org_article_5a1e9b1de9ea4321a0a07efa7543e244</doaj_id><sourcerecordid>2844897177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f3efb676d082152f9fec7de4c438eb94dfcd18be4902cd8efd1bd0b1eb8c48cc3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqf4CPQQ8b83XdpOjLFULBYVWD15CNpm0KeumZlel_960W8S5zDDz3psZXpZdEzwmBMu7-6qaLhZjiikbMyrFpJycZBeUTGTOCjY5_VefZ1ddt8EpRGoV5UUWXta6g3yxBmt9u0JVaPsYGuRbtPwJ6EVH3TTQoFnbQ2xAf4NFy3UEyA9E9P62SLNviGncIRcimn1sY9jD5n617tE8aIumznnjoTW7y-zM6aaDq2MeZa8P02X1lM-fH2fV_Tw3rJB97hi4Oj1isaCkoE46MKUFbjgTUEtunbFE1MAlpsYKcJbUFtcEamG4MIaNstmga4PeqG30HzruVNBeHRohrpSOvTcNqEITkDWxIEFzRonGGpfgdFlwBpTzpHU7aKXHPr-g69UmfMU2na-o4FzIkpRlQrEBZWLougjubyvBam-UGoxSe6PU0ajEuhlYHgD-MYjktCDsF-LokJQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844897177</pqid></control><display><type>article</type><title>Phase-Shedding Control in Two Parallel Interleaved Three-Phase ZVS Inverters for Improved Light Load Efficiency</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xie, Rui ; Li, Hongke ; Lin, Bin ; Xu, Ouyang ; Wang, Xiaohe ; Han, Yanguo ; Chen, Jianliang ; Xin, Zhen</creator><creatorcontrib>Xie, Rui ; Li, Hongke ; Lin, Bin ; Xu, Ouyang ; Wang, Xiaohe ; Han, Yanguo ; Chen, Jianliang ; Xin, Zhen</creatorcontrib><description>The parallel interleaved three-phase inverters are suitable for high-power applications due to the current ripple canceling effect. The power density and efficiency can be further improved with the current ripple prediction (CRP) based high frequency zero-voltage switching (ZVS). However, the variable switching frequency increases rapidly as the power decrease, resulting in higher turn-off loss at light load despite the elimination of turn-on loss. In this paper, a phase-shedding control strategy is proposed along with the CRP based ZVS method to improve the light load efficiency. Only four phase-legs of the two parallel inverters operate at light load to reduce the switching frequency and the circulating current between the two clamping phase-legs. The proposed method can achieve full-range ZVS for all the switches without any auxiliary circuits or high frequency sensors. Current sharing can also be realized between the two clamping phase-legs based on accurate gate signal modulation. A 5 kW simulation and experimental prototype using SiC devices interfacing 400 V dc with three-phase 110 V ac grid is developed to verify the effectiveness of the proposed control strategy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3298676</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clamping ; Clamps ; Current ripple prediction ; Current sharing ; Efficiency ; High frequency ; Inverters ; light load efficiency improvement ; Load management ; phase shedding ; Ripples ; Shedding ; Silicon carbide ; Switches ; Switching ; Switching frequency ; three-phase inverter ; Voltage control ; Zero voltage switching</subject><ispartof>IEEE access, 2023, Vol.11, p.77793-77801</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-f3efb676d082152f9fec7de4c438eb94dfcd18be4902cd8efd1bd0b1eb8c48cc3</cites><orcidid>0000-0001-6489-0135 ; 0000-0002-4184-6710 ; 0000-0001-7229-988X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10194251$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Li, Hongke</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><creatorcontrib>Xu, Ouyang</creatorcontrib><creatorcontrib>Wang, Xiaohe</creatorcontrib><creatorcontrib>Han, Yanguo</creatorcontrib><creatorcontrib>Chen, Jianliang</creatorcontrib><creatorcontrib>Xin, Zhen</creatorcontrib><title>Phase-Shedding Control in Two Parallel Interleaved Three-Phase ZVS Inverters for Improved Light Load Efficiency</title><title>IEEE access</title><addtitle>Access</addtitle><description>The parallel interleaved three-phase inverters are suitable for high-power applications due to the current ripple canceling effect. The power density and efficiency can be further improved with the current ripple prediction (CRP) based high frequency zero-voltage switching (ZVS). However, the variable switching frequency increases rapidly as the power decrease, resulting in higher turn-off loss at light load despite the elimination of turn-on loss. In this paper, a phase-shedding control strategy is proposed along with the CRP based ZVS method to improve the light load efficiency. Only four phase-legs of the two parallel inverters operate at light load to reduce the switching frequency and the circulating current between the two clamping phase-legs. The proposed method can achieve full-range ZVS for all the switches without any auxiliary circuits or high frequency sensors. Current sharing can also be realized between the two clamping phase-legs based on accurate gate signal modulation. A 5 kW simulation and experimental prototype using SiC devices interfacing 400 V dc with three-phase 110 V ac grid is developed to verify the effectiveness of the proposed control strategy.</description><subject>Clamping</subject><subject>Clamps</subject><subject>Current ripple prediction</subject><subject>Current sharing</subject><subject>Efficiency</subject><subject>High frequency</subject><subject>Inverters</subject><subject>light load efficiency improvement</subject><subject>Load management</subject><subject>phase shedding</subject><subject>Ripples</subject><subject>Shedding</subject><subject>Silicon carbide</subject><subject>Switches</subject><subject>Switching</subject><subject>Switching frequency</subject><subject>three-phase inverter</subject><subject>Voltage control</subject><subject>Zero voltage switching</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBqf4CPQQ8b83XdpOjLFULBYVWD15CNpm0KeumZlel_960W8S5zDDz3psZXpZdEzwmBMu7-6qaLhZjiikbMyrFpJycZBeUTGTOCjY5_VefZ1ddt8EpRGoV5UUWXta6g3yxBmt9u0JVaPsYGuRbtPwJ6EVH3TTQoFnbQ2xAf4NFy3UEyA9E9P62SLNviGncIRcimn1sY9jD5n617tE8aIumznnjoTW7y-zM6aaDq2MeZa8P02X1lM-fH2fV_Tw3rJB97hi4Oj1isaCkoE46MKUFbjgTUEtunbFE1MAlpsYKcJbUFtcEamG4MIaNstmga4PeqG30HzruVNBeHRohrpSOvTcNqEITkDWxIEFzRonGGpfgdFlwBpTzpHU7aKXHPr-g69UmfMU2na-o4FzIkpRlQrEBZWLougjubyvBam-UGoxSe6PU0ajEuhlYHgD-MYjktCDsF-LokJQ</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Xie, Rui</creator><creator>Li, Hongke</creator><creator>Lin, Bin</creator><creator>Xu, Ouyang</creator><creator>Wang, Xiaohe</creator><creator>Han, Yanguo</creator><creator>Chen, Jianliang</creator><creator>Xin, Zhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6489-0135</orcidid><orcidid>https://orcid.org/0000-0002-4184-6710</orcidid><orcidid>https://orcid.org/0000-0001-7229-988X</orcidid></search><sort><creationdate>2023</creationdate><title>Phase-Shedding Control in Two Parallel Interleaved Three-Phase ZVS Inverters for Improved Light Load Efficiency</title><author>Xie, Rui ; Li, Hongke ; Lin, Bin ; Xu, Ouyang ; Wang, Xiaohe ; Han, Yanguo ; Chen, Jianliang ; Xin, Zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f3efb676d082152f9fec7de4c438eb94dfcd18be4902cd8efd1bd0b1eb8c48cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clamping</topic><topic>Clamps</topic><topic>Current ripple prediction</topic><topic>Current sharing</topic><topic>Efficiency</topic><topic>High frequency</topic><topic>Inverters</topic><topic>light load efficiency improvement</topic><topic>Load management</topic><topic>phase shedding</topic><topic>Ripples</topic><topic>Shedding</topic><topic>Silicon carbide</topic><topic>Switches</topic><topic>Switching</topic><topic>Switching frequency</topic><topic>three-phase inverter</topic><topic>Voltage control</topic><topic>Zero voltage switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Rui</creatorcontrib><creatorcontrib>Li, Hongke</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><creatorcontrib>Xu, Ouyang</creatorcontrib><creatorcontrib>Wang, Xiaohe</creatorcontrib><creatorcontrib>Han, Yanguo</creatorcontrib><creatorcontrib>Chen, Jianliang</creatorcontrib><creatorcontrib>Xin, Zhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Rui</au><au>Li, Hongke</au><au>Lin, Bin</au><au>Xu, Ouyang</au><au>Wang, Xiaohe</au><au>Han, Yanguo</au><au>Chen, Jianliang</au><au>Xin, Zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-Shedding Control in Two Parallel Interleaved Three-Phase ZVS Inverters for Improved Light Load Efficiency</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>77793</spage><epage>77801</epage><pages>77793-77801</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The parallel interleaved three-phase inverters are suitable for high-power applications due to the current ripple canceling effect. The power density and efficiency can be further improved with the current ripple prediction (CRP) based high frequency zero-voltage switching (ZVS). However, the variable switching frequency increases rapidly as the power decrease, resulting in higher turn-off loss at light load despite the elimination of turn-on loss. In this paper, a phase-shedding control strategy is proposed along with the CRP based ZVS method to improve the light load efficiency. Only four phase-legs of the two parallel inverters operate at light load to reduce the switching frequency and the circulating current between the two clamping phase-legs. The proposed method can achieve full-range ZVS for all the switches without any auxiliary circuits or high frequency sensors. Current sharing can also be realized between the two clamping phase-legs based on accurate gate signal modulation. A 5 kW simulation and experimental prototype using SiC devices interfacing 400 V dc with three-phase 110 V ac grid is developed to verify the effectiveness of the proposed control strategy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3298676</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6489-0135</orcidid><orcidid>https://orcid.org/0000-0002-4184-6710</orcidid><orcidid>https://orcid.org/0000-0001-7229-988X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023, Vol.11, p.77793-77801 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2844897177 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Clamping Clamps Current ripple prediction Current sharing Efficiency High frequency Inverters light load efficiency improvement Load management phase shedding Ripples Shedding Silicon carbide Switches Switching Switching frequency three-phase inverter Voltage control Zero voltage switching |
title | Phase-Shedding Control in Two Parallel Interleaved Three-Phase ZVS Inverters for Improved Light Load Efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-Shedding%20Control%20in%20Two%20Parallel%20Interleaved%20Three-Phase%20ZVS%20Inverters%20for%20Improved%20Light%20Load%20Efficiency&rft.jtitle=IEEE%20access&rft.au=Xie,%20Rui&rft.date=2023&rft.volume=11&rft.spage=77793&rft.epage=77801&rft.pages=77793-77801&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3298676&rft_dat=%3Cproquest_doaj_%3E2844897177%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844897177&rft_id=info:pmid/&rft_ieee_id=10194251&rft_doaj_id=oai_doaj_org_article_5a1e9b1de9ea4321a0a07efa7543e244&rfr_iscdi=true |