Analysis and Design of Multifrequency Compensation Strategy for Wide Misalignment Tolerance in Inductive Power Transfer Systems
In inductive power transfer systems, misalignment can lead to inconsistent output power. In this article, a topology based on a primary-side detuned multifrequency compensation circuit is proposed to provide consistent output over a wide misalignment range. This topology exhibits multiple intersecti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2023-09, Vol.38 (9), p.11705-11718 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11718 |
---|---|
container_issue | 9 |
container_start_page | 11705 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Yao, Zirui Luo, Shiying Zhang, Zhuhaobo Li, Guanxi Wei, Xuan Shen, Xiangwei Zhang, Ni Krein, Philip T. Ma, Hao |
description | In inductive power transfer systems, misalignment can lead to inconsistent output power. In this article, a topology based on a primary-side detuned multifrequency compensation circuit is proposed to provide consistent output over a wide misalignment range. This topology exhibits multiple intersecting power versus coupling coefficient curves given multiple switching frequencies. The coupling range, and associated misalignment range, can be extended without increasing power and current variability by changing the switching frequency strategically at curve intersections. Parameter design and selection of the number of switching frequencies are presented. Fundamental relationships between power variation and coupling range are established. With this approach, a choice of two suitable switching frequencies changes output power by only 10% over a coupling coefficient range from 0.14 to 0.35. Three frequencies can support lower power variation or a wider coupling range. Primary current at low coupling is lower with the strategy than for conventional alternatives because reactive power can be limited. A 1.5 kW prototype has been prepared to verify the topology. The prototype confirms a power variation of 10% over a coupling coefficient range from 0.14 to 0.35 with two frequencies. With three frequencies, power variation drops to 6.7% over the same coupling range. |
doi_str_mv | 10.1109/TPEL.2023.3287352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844895960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844895960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-41710ab79983f0d20b44745eb553154e16fd86f245a91c883dd13cd99ccb9aec3</originalsourceid><addsrcrecordid>eNotkE9LAzEUxIMoWP98AG8Bz1uTTdJNjqVWLVQUrHhc0uxLSdkmNckqe_Kru6U9vYE3MzA_hO4oGVNK1MPqfb4cl6RkY1bKionyDI2o4rQglFTnaESkFIVUil2iq5S2hFAuCB2hv6nXbZ9cwto3-BGS23gcLH7t2uxshO8OvOnxLOz24JPOLnj8kaPOsOmxDRF_uQbwq0u6HZI78BmvQgtRewPYebzwTWey-wH8Hn4h4tXwSXYQH33KsEs36MLqNsHt6V6jz6f5avZSLN-eF7PpsjBlxXLBaUWJXldKSWZJU5I15xUXsBaCUcGBTmwjJ7bkQitqpGRNQ5lplDJmrTQYdo3uj737GIZNKdfb0MVhe6pLyblUQk3I4KJHl4khpQi23ke307GvKakPnOsD5_rAuT5xZv9aznK3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844895960</pqid></control><display><type>article</type><title>Analysis and Design of Multifrequency Compensation Strategy for Wide Misalignment Tolerance in Inductive Power Transfer Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Yao, Zirui ; Luo, Shiying ; Zhang, Zhuhaobo ; Li, Guanxi ; Wei, Xuan ; Shen, Xiangwei ; Zhang, Ni ; Krein, Philip T. ; Ma, Hao</creator><creatorcontrib>Yao, Zirui ; Luo, Shiying ; Zhang, Zhuhaobo ; Li, Guanxi ; Wei, Xuan ; Shen, Xiangwei ; Zhang, Ni ; Krein, Philip T. ; Ma, Hao</creatorcontrib><description>In inductive power transfer systems, misalignment can lead to inconsistent output power. In this article, a topology based on a primary-side detuned multifrequency compensation circuit is proposed to provide consistent output over a wide misalignment range. This topology exhibits multiple intersecting power versus coupling coefficient curves given multiple switching frequencies. The coupling range, and associated misalignment range, can be extended without increasing power and current variability by changing the switching frequency strategically at curve intersections. Parameter design and selection of the number of switching frequencies are presented. Fundamental relationships between power variation and coupling range are established. With this approach, a choice of two suitable switching frequencies changes output power by only 10% over a coupling coefficient range from 0.14 to 0.35. Three frequencies can support lower power variation or a wider coupling range. Primary current at low coupling is lower with the strategy than for conventional alternatives because reactive power can be limited. A 1.5 kW prototype has been prepared to verify the topology. The prototype confirms a power variation of 10% over a coupling coefficient range from 0.14 to 0.35 with two frequencies. With three frequencies, power variation drops to 6.7% over the same coupling range.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3287352</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Circuits ; Coefficient of variation ; Compensation ; Coupling coefficients ; Design parameters ; Misalignment ; Power transfer ; Prototypes ; Reactive power ; Switching ; Topology</subject><ispartof>IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.11705-11718</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-41710ab79983f0d20b44745eb553154e16fd86f245a91c883dd13cd99ccb9aec3</citedby><cites>FETCH-LOGICAL-c273t-41710ab79983f0d20b44745eb553154e16fd86f245a91c883dd13cd99ccb9aec3</cites><orcidid>0000-0002-0631-7469 ; 0000-0001-7256-4874 ; 0000-0001-8048-6968 ; 0000-0002-4714-0233 ; 0000-0001-9827-3346 ; 0000-0003-0584-0378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Yao, Zirui</creatorcontrib><creatorcontrib>Luo, Shiying</creatorcontrib><creatorcontrib>Zhang, Zhuhaobo</creatorcontrib><creatorcontrib>Li, Guanxi</creatorcontrib><creatorcontrib>Wei, Xuan</creatorcontrib><creatorcontrib>Shen, Xiangwei</creatorcontrib><creatorcontrib>Zhang, Ni</creatorcontrib><creatorcontrib>Krein, Philip T.</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><title>Analysis and Design of Multifrequency Compensation Strategy for Wide Misalignment Tolerance in Inductive Power Transfer Systems</title><title>IEEE transactions on power electronics</title><description>In inductive power transfer systems, misalignment can lead to inconsistent output power. In this article, a topology based on a primary-side detuned multifrequency compensation circuit is proposed to provide consistent output over a wide misalignment range. This topology exhibits multiple intersecting power versus coupling coefficient curves given multiple switching frequencies. The coupling range, and associated misalignment range, can be extended without increasing power and current variability by changing the switching frequency strategically at curve intersections. Parameter design and selection of the number of switching frequencies are presented. Fundamental relationships between power variation and coupling range are established. With this approach, a choice of two suitable switching frequencies changes output power by only 10% over a coupling coefficient range from 0.14 to 0.35. Three frequencies can support lower power variation or a wider coupling range. Primary current at low coupling is lower with the strategy than for conventional alternatives because reactive power can be limited. A 1.5 kW prototype has been prepared to verify the topology. The prototype confirms a power variation of 10% over a coupling coefficient range from 0.14 to 0.35 with two frequencies. With three frequencies, power variation drops to 6.7% over the same coupling range.</description><subject>Circuits</subject><subject>Coefficient of variation</subject><subject>Compensation</subject><subject>Coupling coefficients</subject><subject>Design parameters</subject><subject>Misalignment</subject><subject>Power transfer</subject><subject>Prototypes</subject><subject>Reactive power</subject><subject>Switching</subject><subject>Topology</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEUxIMoWP98AG8Bz1uTTdJNjqVWLVQUrHhc0uxLSdkmNckqe_Kru6U9vYE3MzA_hO4oGVNK1MPqfb4cl6RkY1bKionyDI2o4rQglFTnaESkFIVUil2iq5S2hFAuCB2hv6nXbZ9cwto3-BGS23gcLH7t2uxshO8OvOnxLOz24JPOLnj8kaPOsOmxDRF_uQbwq0u6HZI78BmvQgtRewPYebzwTWey-wH8Hn4h4tXwSXYQH33KsEs36MLqNsHt6V6jz6f5avZSLN-eF7PpsjBlxXLBaUWJXldKSWZJU5I15xUXsBaCUcGBTmwjJ7bkQitqpGRNQ5lplDJmrTQYdo3uj737GIZNKdfb0MVhe6pLyblUQk3I4KJHl4khpQi23ke307GvKakPnOsD5_rAuT5xZv9aznK3</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Yao, Zirui</creator><creator>Luo, Shiying</creator><creator>Zhang, Zhuhaobo</creator><creator>Li, Guanxi</creator><creator>Wei, Xuan</creator><creator>Shen, Xiangwei</creator><creator>Zhang, Ni</creator><creator>Krein, Philip T.</creator><creator>Ma, Hao</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0631-7469</orcidid><orcidid>https://orcid.org/0000-0001-7256-4874</orcidid><orcidid>https://orcid.org/0000-0001-8048-6968</orcidid><orcidid>https://orcid.org/0000-0002-4714-0233</orcidid><orcidid>https://orcid.org/0000-0001-9827-3346</orcidid><orcidid>https://orcid.org/0000-0003-0584-0378</orcidid></search><sort><creationdate>20230901</creationdate><title>Analysis and Design of Multifrequency Compensation Strategy for Wide Misalignment Tolerance in Inductive Power Transfer Systems</title><author>Yao, Zirui ; Luo, Shiying ; Zhang, Zhuhaobo ; Li, Guanxi ; Wei, Xuan ; Shen, Xiangwei ; Zhang, Ni ; Krein, Philip T. ; Ma, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-41710ab79983f0d20b44745eb553154e16fd86f245a91c883dd13cd99ccb9aec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuits</topic><topic>Coefficient of variation</topic><topic>Compensation</topic><topic>Coupling coefficients</topic><topic>Design parameters</topic><topic>Misalignment</topic><topic>Power transfer</topic><topic>Prototypes</topic><topic>Reactive power</topic><topic>Switching</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Zirui</creatorcontrib><creatorcontrib>Luo, Shiying</creatorcontrib><creatorcontrib>Zhang, Zhuhaobo</creatorcontrib><creatorcontrib>Li, Guanxi</creatorcontrib><creatorcontrib>Wei, Xuan</creatorcontrib><creatorcontrib>Shen, Xiangwei</creatorcontrib><creatorcontrib>Zhang, Ni</creatorcontrib><creatorcontrib>Krein, Philip T.</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Zirui</au><au>Luo, Shiying</au><au>Zhang, Zhuhaobo</au><au>Li, Guanxi</au><au>Wei, Xuan</au><au>Shen, Xiangwei</au><au>Zhang, Ni</au><au>Krein, Philip T.</au><au>Ma, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Design of Multifrequency Compensation Strategy for Wide Misalignment Tolerance in Inductive Power Transfer Systems</atitle><jtitle>IEEE transactions on power electronics</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>38</volume><issue>9</issue><spage>11705</spage><epage>11718</epage><pages>11705-11718</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><abstract>In inductive power transfer systems, misalignment can lead to inconsistent output power. In this article, a topology based on a primary-side detuned multifrequency compensation circuit is proposed to provide consistent output over a wide misalignment range. This topology exhibits multiple intersecting power versus coupling coefficient curves given multiple switching frequencies. The coupling range, and associated misalignment range, can be extended without increasing power and current variability by changing the switching frequency strategically at curve intersections. Parameter design and selection of the number of switching frequencies are presented. Fundamental relationships between power variation and coupling range are established. With this approach, a choice of two suitable switching frequencies changes output power by only 10% over a coupling coefficient range from 0.14 to 0.35. Three frequencies can support lower power variation or a wider coupling range. Primary current at low coupling is lower with the strategy than for conventional alternatives because reactive power can be limited. A 1.5 kW prototype has been prepared to verify the topology. The prototype confirms a power variation of 10% over a coupling coefficient range from 0.14 to 0.35 with two frequencies. With three frequencies, power variation drops to 6.7% over the same coupling range.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TPEL.2023.3287352</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0631-7469</orcidid><orcidid>https://orcid.org/0000-0001-7256-4874</orcidid><orcidid>https://orcid.org/0000-0001-8048-6968</orcidid><orcidid>https://orcid.org/0000-0002-4714-0233</orcidid><orcidid>https://orcid.org/0000-0001-9827-3346</orcidid><orcidid>https://orcid.org/0000-0003-0584-0378</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-09, Vol.38 (9), p.11705-11718 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2844895960 |
source | IEEE Electronic Library (IEL) |
subjects | Circuits Coefficient of variation Compensation Coupling coefficients Design parameters Misalignment Power transfer Prototypes Reactive power Switching Topology |
title | Analysis and Design of Multifrequency Compensation Strategy for Wide Misalignment Tolerance in Inductive Power Transfer Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Design%20of%20Multifrequency%20Compensation%20Strategy%20for%20Wide%20Misalignment%20Tolerance%20in%20Inductive%20Power%20Transfer%20Systems&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yao,%20Zirui&rft.date=2023-09-01&rft.volume=38&rft.issue=9&rft.spage=11705&rft.epage=11718&rft.pages=11705-11718&rft.issn=0885-8993&rft.eissn=1941-0107&rft_id=info:doi/10.1109/TPEL.2023.3287352&rft_dat=%3Cproquest_cross%3E2844895960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844895960&rft_id=info:pmid/&rfr_iscdi=true |