Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing
With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promis...
Gespeichert in:
Veröffentlicht in: | Science China materials 2023-08, Vol.66 (8), p.3238-3250 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3250 |
---|---|
container_issue | 8 |
container_start_page | 3238 |
container_title | Science China materials |
container_volume | 66 |
creator | Yuan, Shuai Feng, Zhe Qiu, Bocang Li, Ying Zhai, Peichen Li, Lan Wu, Zuheng Ma, Shufang Xu, Bingshe Ding, Liping Wei, Guodong Shen, Guozhen |
description | With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and
in situ
computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology. |
doi_str_mv | 10.1007/s40843-023-2472-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844756571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844756571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</originalsourceid><addsrcrecordid>eNp1kMFq3DAQhk1IISHdB8hNkLMbSZZs-RhCmwQWcmh7FrI0WpR4pa1GzrLPkJeuNlvIqZfRIP7vg_mb5prRb4zS4RYFVaJrKe9aLgbe0rPmkrNxbIWk7LzudJSt4ry_aFaIL5RS1kvGRnXZvP8Mc7ApEmvyFByQaGLahwztZBAc2S5zCX6JtoQUzUxMdAS8DzZALOQt4FI_8RDNrgRLHLwFC0h8yuQomQGRlGwibgNiNXzwEZZcqQhln_IrsWm7W0qIm6_NF29mhNW_96r5_eP7r_vHdv388HR_t25tJ8dSJzAx9U5MjI7eTJJ7J6SaHFNCDb10vJ-6HiYvlXFGjNT4bqBudHwYGCjVXTU3J-8upz8LYNEvacn1OtRcCTHIXg6sptgpZXNCzOD1LoetyQfNqD7Wrk-161q7PtauaWX4icGajRvIn-b_Q38B8mmJDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844756571</pqid></control><display><type>article</type><title>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Yuan, Shuai ; Feng, Zhe ; Qiu, Bocang ; Li, Ying ; Zhai, Peichen ; Li, Lan ; Wu, Zuheng ; Ma, Shufang ; Xu, Bingshe ; Ding, Liping ; Wei, Guodong ; Shen, Guozhen</creator><creatorcontrib>Yuan, Shuai ; Feng, Zhe ; Qiu, Bocang ; Li, Ying ; Zhai, Peichen ; Li, Lan ; Wu, Zuheng ; Ma, Shufang ; Xu, Bingshe ; Ding, Liping ; Wei, Guodong ; Shen, Guozhen</creatorcontrib><description>With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and
in situ
computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2472-0</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Chemistry and Materials Science ; Chemistry/Food Science ; Internet of Things ; Materials Science ; Memristors ; Nanowires ; Neural networks ; Optoelectronics ; Perception ; Silicon carbide ; Synapses</subject><ispartof>Science China materials, 2023-08, Vol.66 (8), p.3238-3250</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</citedby><cites>FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2472-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2472-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Qiu, Bocang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Zhai, Peichen</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Ma, Shufang</creatorcontrib><creatorcontrib>Xu, Bingshe</creatorcontrib><creatorcontrib>Ding, Liping</creatorcontrib><creatorcontrib>Wei, Guodong</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><title>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and
in situ
computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Internet of Things</subject><subject>Materials Science</subject><subject>Memristors</subject><subject>Nanowires</subject><subject>Neural networks</subject><subject>Optoelectronics</subject><subject>Perception</subject><subject>Silicon carbide</subject><subject>Synapses</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFq3DAQhk1IISHdB8hNkLMbSZZs-RhCmwQWcmh7FrI0WpR4pa1GzrLPkJeuNlvIqZfRIP7vg_mb5prRb4zS4RYFVaJrKe9aLgbe0rPmkrNxbIWk7LzudJSt4ry_aFaIL5RS1kvGRnXZvP8Mc7ApEmvyFByQaGLahwztZBAc2S5zCX6JtoQUzUxMdAS8DzZALOQt4FI_8RDNrgRLHLwFC0h8yuQomQGRlGwibgNiNXzwEZZcqQhln_IrsWm7W0qIm6_NF29mhNW_96r5_eP7r_vHdv388HR_t25tJ8dSJzAx9U5MjI7eTJJ7J6SaHFNCDb10vJ-6HiYvlXFGjNT4bqBudHwYGCjVXTU3J-8upz8LYNEvacn1OtRcCTHIXg6sptgpZXNCzOD1LoetyQfNqD7Wrk-161q7PtauaWX4icGajRvIn-b_Q38B8mmJDw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yuan, Shuai</creator><creator>Feng, Zhe</creator><creator>Qiu, Bocang</creator><creator>Li, Ying</creator><creator>Zhai, Peichen</creator><creator>Li, Lan</creator><creator>Wu, Zuheng</creator><creator>Ma, Shufang</creator><creator>Xu, Bingshe</creator><creator>Ding, Liping</creator><creator>Wei, Guodong</creator><creator>Shen, Guozhen</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</title><author>Yuan, Shuai ; Feng, Zhe ; Qiu, Bocang ; Li, Ying ; Zhai, Peichen ; Li, Lan ; Wu, Zuheng ; Ma, Shufang ; Xu, Bingshe ; Ding, Liping ; Wei, Guodong ; Shen, Guozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Internet of Things</topic><topic>Materials Science</topic><topic>Memristors</topic><topic>Nanowires</topic><topic>Neural networks</topic><topic>Optoelectronics</topic><topic>Perception</topic><topic>Silicon carbide</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Qiu, Bocang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Zhai, Peichen</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Ma, Shufang</creatorcontrib><creatorcontrib>Xu, Bingshe</creatorcontrib><creatorcontrib>Ding, Liping</creatorcontrib><creatorcontrib>Wei, Guodong</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Shuai</au><au>Feng, Zhe</au><au>Qiu, Bocang</au><au>Li, Ying</au><au>Zhai, Peichen</au><au>Li, Lan</au><au>Wu, Zuheng</au><au>Ma, Shufang</au><au>Xu, Bingshe</au><au>Ding, Liping</au><au>Wei, Guodong</au><au>Shen, Guozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>66</volume><issue>8</issue><spage>3238</spage><epage>3250</epage><pages>3238-3250</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and
in situ
computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2472-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2023-08, Vol.66 (8), p.3238-3250 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2844756571 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Accuracy Artificial intelligence Artificial neural networks Chemistry and Materials Science Chemistry/Food Science Internet of Things Materials Science Memristors Nanowires Neural networks Optoelectronics Perception Silicon carbide Synapses |
title | Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20carbide%20nanowire-based%20multifunctional%20and%20efficient%20visual%20synaptic%20devices%20for%20wireless%20transmission%20and%20neural%20network%20computing&rft.jtitle=Science%20China%20materials&rft.au=Yuan,%20Shuai&rft.date=2023-08-01&rft.volume=66&rft.issue=8&rft.spage=3238&rft.epage=3250&rft.pages=3238-3250&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2472-0&rft_dat=%3Cproquest_cross%3E2844756571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844756571&rft_id=info:pmid/&rfr_iscdi=true |