Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing

With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2023-08, Vol.66 (8), p.3238-3250
Hauptverfasser: Yuan, Shuai, Feng, Zhe, Qiu, Bocang, Li, Ying, Zhai, Peichen, Li, Lan, Wu, Zuheng, Ma, Shufang, Xu, Bingshe, Ding, Liping, Wei, Guodong, Shen, Guozhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3250
container_issue 8
container_start_page 3238
container_title Science China materials
container_volume 66
creator Yuan, Shuai
Feng, Zhe
Qiu, Bocang
Li, Ying
Zhai, Peichen
Li, Lan
Wu, Zuheng
Ma, Shufang
Xu, Bingshe
Ding, Liping
Wei, Guodong
Shen, Guozhen
description With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and in situ computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.
doi_str_mv 10.1007/s40843-023-2472-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844756571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844756571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</originalsourceid><addsrcrecordid>eNp1kMFq3DAQhk1IISHdB8hNkLMbSZZs-RhCmwQWcmh7FrI0WpR4pa1GzrLPkJeuNlvIqZfRIP7vg_mb5prRb4zS4RYFVaJrKe9aLgbe0rPmkrNxbIWk7LzudJSt4ry_aFaIL5RS1kvGRnXZvP8Mc7ApEmvyFByQaGLahwztZBAc2S5zCX6JtoQUzUxMdAS8DzZALOQt4FI_8RDNrgRLHLwFC0h8yuQomQGRlGwibgNiNXzwEZZcqQhln_IrsWm7W0qIm6_NF29mhNW_96r5_eP7r_vHdv388HR_t25tJ8dSJzAx9U5MjI7eTJJ7J6SaHFNCDb10vJ-6HiYvlXFGjNT4bqBudHwYGCjVXTU3J-8upz8LYNEvacn1OtRcCTHIXg6sptgpZXNCzOD1LoetyQfNqD7Wrk-161q7PtauaWX4icGajRvIn-b_Q38B8mmJDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844756571</pqid></control><display><type>article</type><title>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Yuan, Shuai ; Feng, Zhe ; Qiu, Bocang ; Li, Ying ; Zhai, Peichen ; Li, Lan ; Wu, Zuheng ; Ma, Shufang ; Xu, Bingshe ; Ding, Liping ; Wei, Guodong ; Shen, Guozhen</creator><creatorcontrib>Yuan, Shuai ; Feng, Zhe ; Qiu, Bocang ; Li, Ying ; Zhai, Peichen ; Li, Lan ; Wu, Zuheng ; Ma, Shufang ; Xu, Bingshe ; Ding, Liping ; Wei, Guodong ; Shen, Guozhen</creatorcontrib><description>With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and in situ computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-023-2472-0</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Accuracy ; Artificial intelligence ; Artificial neural networks ; Chemistry and Materials Science ; Chemistry/Food Science ; Internet of Things ; Materials Science ; Memristors ; Nanowires ; Neural networks ; Optoelectronics ; Perception ; Silicon carbide ; Synapses</subject><ispartof>Science China materials, 2023-08, Vol.66 (8), p.3238-3250</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</citedby><cites>FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-023-2472-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-023-2472-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Qiu, Bocang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Zhai, Peichen</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Ma, Shufang</creatorcontrib><creatorcontrib>Xu, Bingshe</creatorcontrib><creatorcontrib>Ding, Liping</creatorcontrib><creatorcontrib>Wei, Guodong</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><title>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and in situ computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Internet of Things</subject><subject>Materials Science</subject><subject>Memristors</subject><subject>Nanowires</subject><subject>Neural networks</subject><subject>Optoelectronics</subject><subject>Perception</subject><subject>Silicon carbide</subject><subject>Synapses</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFq3DAQhk1IISHdB8hNkLMbSZZs-RhCmwQWcmh7FrI0WpR4pa1GzrLPkJeuNlvIqZfRIP7vg_mb5prRb4zS4RYFVaJrKe9aLgbe0rPmkrNxbIWk7LzudJSt4ry_aFaIL5RS1kvGRnXZvP8Mc7ApEmvyFByQaGLahwztZBAc2S5zCX6JtoQUzUxMdAS8DzZALOQt4FI_8RDNrgRLHLwFC0h8yuQomQGRlGwibgNiNXzwEZZcqQhln_IrsWm7W0qIm6_NF29mhNW_96r5_eP7r_vHdv388HR_t25tJ8dSJzAx9U5MjI7eTJJ7J6SaHFNCDb10vJ-6HiYvlXFGjNT4bqBudHwYGCjVXTU3J-8upz8LYNEvacn1OtRcCTHIXg6sptgpZXNCzOD1LoetyQfNqD7Wrk-161q7PtauaWX4icGajRvIn-b_Q38B8mmJDw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Yuan, Shuai</creator><creator>Feng, Zhe</creator><creator>Qiu, Bocang</creator><creator>Li, Ying</creator><creator>Zhai, Peichen</creator><creator>Li, Lan</creator><creator>Wu, Zuheng</creator><creator>Ma, Shufang</creator><creator>Xu, Bingshe</creator><creator>Ding, Liping</creator><creator>Wei, Guodong</creator><creator>Shen, Guozhen</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230801</creationdate><title>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</title><author>Yuan, Shuai ; Feng, Zhe ; Qiu, Bocang ; Li, Ying ; Zhai, Peichen ; Li, Lan ; Wu, Zuheng ; Ma, Shufang ; Xu, Bingshe ; Ding, Liping ; Wei, Guodong ; Shen, Guozhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c3e14b6d4b109fab52fd458bd1848765d26b36ebf58ada490af370d9d2771e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Internet of Things</topic><topic>Materials Science</topic><topic>Memristors</topic><topic>Nanowires</topic><topic>Neural networks</topic><topic>Optoelectronics</topic><topic>Perception</topic><topic>Silicon carbide</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Feng, Zhe</creatorcontrib><creatorcontrib>Qiu, Bocang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Zhai, Peichen</creatorcontrib><creatorcontrib>Li, Lan</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Ma, Shufang</creatorcontrib><creatorcontrib>Xu, Bingshe</creatorcontrib><creatorcontrib>Ding, Liping</creatorcontrib><creatorcontrib>Wei, Guodong</creatorcontrib><creatorcontrib>Shen, Guozhen</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Shuai</au><au>Feng, Zhe</au><au>Qiu, Bocang</au><au>Li, Ying</au><au>Zhai, Peichen</au><au>Li, Lan</au><au>Wu, Zuheng</au><au>Ma, Shufang</au><au>Xu, Bingshe</au><au>Ding, Liping</au><au>Wei, Guodong</au><au>Shen, Guozhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>66</volume><issue>8</issue><spage>3238</spage><epage>3250</epage><pages>3238-3250</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>With the rapid development of big data and the internet of things, the current computing paradigms based on traditional Von Neumann architecture have suffered from limited throughput and energy inefficiency. The memristor-based artificial neural network computing system could be regarded as a promising candidate to overcome this bottleneck. In this study, silicon carbide (SiC) nanowire (NW)-based optoelectronic memristors are successfully developed, which can realize complex brain-like features such as dendritic neuron and Pavlov’s learning. On the basis of the visual function, perception, storage, and in situ computing functions integrated within optoelectronic memristors have been achieved. More importantly, benefiting from the excellent computing power of the SiC NW visual synapses, the constructed spike neural network is capable of implementing the identification of early lung cancer lesions. The accuracy rate of detection exceeds 90% with only a few iterations, indicating promising applications in the medical field with high efficiency and accuracy. The present study provides a promising path for developing and promoting SiC-based integrating perception-storage-computation artificial intelligence devices for neuromorphic computing technology.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-023-2472-0</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2023-08, Vol.66 (8), p.3238-3250
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2844756571
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Accuracy
Artificial intelligence
Artificial neural networks
Chemistry and Materials Science
Chemistry/Food Science
Internet of Things
Materials Science
Memristors
Nanowires
Neural networks
Optoelectronics
Perception
Silicon carbide
Synapses
title Silicon carbide nanowire-based multifunctional and efficient visual synaptic devices for wireless transmission and neural network computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silicon%20carbide%20nanowire-based%20multifunctional%20and%20efficient%20visual%20synaptic%20devices%20for%20wireless%20transmission%20and%20neural%20network%20computing&rft.jtitle=Science%20China%20materials&rft.au=Yuan,%20Shuai&rft.date=2023-08-01&rft.volume=66&rft.issue=8&rft.spage=3238&rft.epage=3250&rft.pages=3238-3250&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-023-2472-0&rft_dat=%3Cproquest_cross%3E2844756571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844756571&rft_id=info:pmid/&rfr_iscdi=true