Composite learning control of strict‐feedback nonlinear system with unknown control gain function
The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2023-09, Vol.33 (13), p.7793-7810 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7810 |
---|---|
container_issue | 13 |
container_start_page | 7793 |
container_title | International journal of robust and nonlinear control |
container_volume | 33 |
creator | Shou, Yingxin Xu, Bin Pu, Huayan Luo, Jun Shi, Zhongke |
description | The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance. |
doi_str_mv | 10.1002/rnc.6797 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844492676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844492676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-ad583f901ad7cdd652501116cfeedd7e472ac5802cb87751deb14640b02edf183</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRp0xyl-AWLgug5pEm6ZrebrEnKsjcfwWf0SWxd8eZpBuY3M_AH4ByjGUaIXAWnZiXj7ABMMOI8wyTnh2NPeVZxkh-DkxiXCA0zQidA1X698dEmAzsjg7NuAZV3KfgO-hbGFKxKXx-frTG6kWoFnXeddQOFcReTWcOtTW-wdyvnt-5vdSGtg23vVLLenYKjVnbRnP3WKXi9vXmp77P5091DfT3PFCkoy6QuqrzlCEvNlNZlQQqEMS7V-FszQxmRqqgQUU3FWIG1aTAtKWoQMbrFVT4FF_u7m-DfexOTWPo-uOGlIBWllJOSlYO63CsVfIzBtGIT7FqGncBIjBGKIUIxRjjQbE-3tjO7f514fqx__DdKJXVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844492676</pqid></control><display><type>article</type><title>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</title><source>Wiley Online Library All Journals</source><creator>Shou, Yingxin ; Xu, Bin ; Pu, Huayan ; Luo, Jun ; Shi, Zhongke</creator><creatorcontrib>Shou, Yingxin ; Xu, Bin ; Pu, Huayan ; Luo, Jun ; Shi, Zhongke</creatorcontrib><description>The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6797</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Autonomous underwater vehicles ; Control systems ; disturbance observer ; Disturbance observers ; Dynamical systems ; Feedback ; Learning ; multiple uncertainties ; neural network ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Stability analysis ; strict‐feedback nonlinear system ; Systems stability ; Tracking errors ; Uncertainty</subject><ispartof>International journal of robust and nonlinear control, 2023-09, Vol.33 (13), p.7793-7810</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-ad583f901ad7cdd652501116cfeedd7e472ac5802cb87751deb14640b02edf183</cites><orcidid>0000-0001-9115-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Shou, Yingxin</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Shi, Zhongke</creatorcontrib><title>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</title><title>International journal of robust and nonlinear control</title><description>The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicles</subject><subject>Control systems</subject><subject>disturbance observer</subject><subject>Disturbance observers</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Learning</subject><subject>multiple uncertainties</subject><subject>neural network</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Stability analysis</subject><subject>strict‐feedback nonlinear system</subject><subject>Systems stability</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRp0xyl-AWLgug5pEm6ZrebrEnKsjcfwWf0SWxd8eZpBuY3M_AH4ByjGUaIXAWnZiXj7ABMMOI8wyTnh2NPeVZxkh-DkxiXCA0zQidA1X698dEmAzsjg7NuAZV3KfgO-hbGFKxKXx-frTG6kWoFnXeddQOFcReTWcOtTW-wdyvnt-5vdSGtg23vVLLenYKjVnbRnP3WKXi9vXmp77P5091DfT3PFCkoy6QuqrzlCEvNlNZlQQqEMS7V-FszQxmRqqgQUU3FWIG1aTAtKWoQMbrFVT4FF_u7m-DfexOTWPo-uOGlIBWllJOSlYO63CsVfIzBtGIT7FqGncBIjBGKIUIxRjjQbE-3tjO7f514fqx__DdKJXVm</recordid><startdate>20230910</startdate><enddate>20230910</enddate><creator>Shou, Yingxin</creator><creator>Xu, Bin</creator><creator>Pu, Huayan</creator><creator>Luo, Jun</creator><creator>Shi, Zhongke</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9115-4686</orcidid></search><sort><creationdate>20230910</creationdate><title>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</title><author>Shou, Yingxin ; Xu, Bin ; Pu, Huayan ; Luo, Jun ; Shi, Zhongke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-ad583f901ad7cdd652501116cfeedd7e472ac5802cb87751deb14640b02edf183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicles</topic><topic>Control systems</topic><topic>disturbance observer</topic><topic>Disturbance observers</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Learning</topic><topic>multiple uncertainties</topic><topic>neural network</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Stability analysis</topic><topic>strict‐feedback nonlinear system</topic><topic>Systems stability</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shou, Yingxin</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Shi, Zhongke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shou, Yingxin</au><au>Xu, Bin</au><au>Pu, Huayan</au><au>Luo, Jun</au><au>Shi, Zhongke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-09-10</date><risdate>2023</risdate><volume>33</volume><issue>13</issue><spage>7793</spage><epage>7810</epage><pages>7793-7810</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6797</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9115-4686</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2023-09, Vol.33 (13), p.7793-7810 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2844492676 |
source | Wiley Online Library All Journals |
subjects | Algorithms Autonomous underwater vehicles Control systems disturbance observer Disturbance observers Dynamical systems Feedback Learning multiple uncertainties neural network Nonlinear dynamics Nonlinear systems Nonlinearity Stability analysis strict‐feedback nonlinear system Systems stability Tracking errors Uncertainty |
title | Composite learning control of strict‐feedback nonlinear system with unknown control gain function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20learning%20control%20of%20strict%E2%80%90feedback%20nonlinear%20system%20with%20unknown%20control%20gain%20function&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Shou,%20Yingxin&rft.date=2023-09-10&rft.volume=33&rft.issue=13&rft.spage=7793&rft.epage=7810&rft.pages=7793-7810&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6797&rft_dat=%3Cproquest_cross%3E2844492676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844492676&rft_id=info:pmid/&rfr_iscdi=true |