Composite learning control of strict‐feedback nonlinear system with unknown control gain function

The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2023-09, Vol.33 (13), p.7793-7810
Hauptverfasser: Shou, Yingxin, Xu, Bin, Pu, Huayan, Luo, Jun, Shi, Zhongke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7810
container_issue 13
container_start_page 7793
container_title International journal of robust and nonlinear control
container_volume 33
creator Shou, Yingxin
Xu, Bin
Pu, Huayan
Luo, Jun
Shi, Zhongke
description The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.
doi_str_mv 10.1002/rnc.6797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844492676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844492676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-ad583f901ad7cdd652501116cfeedd7e472ac5802cb87751deb14640b02edf183</originalsourceid><addsrcrecordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRp0xyl-AWLgug5pEm6ZrebrEnKsjcfwWf0SWxd8eZpBuY3M_AH4ByjGUaIXAWnZiXj7ABMMOI8wyTnh2NPeVZxkh-DkxiXCA0zQidA1X698dEmAzsjg7NuAZV3KfgO-hbGFKxKXx-frTG6kWoFnXeddQOFcReTWcOtTW-wdyvnt-5vdSGtg23vVLLenYKjVnbRnP3WKXi9vXmp77P5091DfT3PFCkoy6QuqrzlCEvNlNZlQQqEMS7V-FszQxmRqqgQUU3FWIG1aTAtKWoQMbrFVT4FF_u7m-DfexOTWPo-uOGlIBWllJOSlYO63CsVfIzBtGIT7FqGncBIjBGKIUIxRjjQbE-3tjO7f514fqx__DdKJXVm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844492676</pqid></control><display><type>article</type><title>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</title><source>Wiley Online Library All Journals</source><creator>Shou, Yingxin ; Xu, Bin ; Pu, Huayan ; Luo, Jun ; Shi, Zhongke</creator><creatorcontrib>Shou, Yingxin ; Xu, Bin ; Pu, Huayan ; Luo, Jun ; Shi, Zhongke</creatorcontrib><description>The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6797</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Autonomous underwater vehicles ; Control systems ; disturbance observer ; Disturbance observers ; Dynamical systems ; Feedback ; Learning ; multiple uncertainties ; neural network ; Nonlinear dynamics ; Nonlinear systems ; Nonlinearity ; Stability analysis ; strict‐feedback nonlinear system ; Systems stability ; Tracking errors ; Uncertainty</subject><ispartof>International journal of robust and nonlinear control, 2023-09, Vol.33 (13), p.7793-7810</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-ad583f901ad7cdd652501116cfeedd7e472ac5802cb87751deb14640b02edf183</cites><orcidid>0000-0001-9115-4686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Shou, Yingxin</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Shi, Zhongke</creatorcontrib><title>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</title><title>International journal of robust and nonlinear control</title><description>The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.</description><subject>Algorithms</subject><subject>Autonomous underwater vehicles</subject><subject>Control systems</subject><subject>disturbance observer</subject><subject>Disturbance observers</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Learning</subject><subject>multiple uncertainties</subject><subject>neural network</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Stability analysis</subject><subject>strict‐feedback nonlinear system</subject><subject>Systems stability</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAQB_AgCq6r4CMEvHjpmqRp0xyl-AWLgug5pEm6ZrebrEnKsjcfwWf0SWxd8eZpBuY3M_AH4ByjGUaIXAWnZiXj7ABMMOI8wyTnh2NPeVZxkh-DkxiXCA0zQidA1X698dEmAzsjg7NuAZV3KfgO-hbGFKxKXx-frTG6kWoFnXeddQOFcReTWcOtTW-wdyvnt-5vdSGtg23vVLLenYKjVnbRnP3WKXi9vXmp77P5091DfT3PFCkoy6QuqrzlCEvNlNZlQQqEMS7V-FszQxmRqqgQUU3FWIG1aTAtKWoQMbrFVT4FF_u7m-DfexOTWPo-uOGlIBWllJOSlYO63CsVfIzBtGIT7FqGncBIjBGKIUIxRjjQbE-3tjO7f514fqx__DdKJXVm</recordid><startdate>20230910</startdate><enddate>20230910</enddate><creator>Shou, Yingxin</creator><creator>Xu, Bin</creator><creator>Pu, Huayan</creator><creator>Luo, Jun</creator><creator>Shi, Zhongke</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9115-4686</orcidid></search><sort><creationdate>20230910</creationdate><title>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</title><author>Shou, Yingxin ; Xu, Bin ; Pu, Huayan ; Luo, Jun ; Shi, Zhongke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-ad583f901ad7cdd652501116cfeedd7e472ac5802cb87751deb14640b02edf183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomous underwater vehicles</topic><topic>Control systems</topic><topic>disturbance observer</topic><topic>Disturbance observers</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Learning</topic><topic>multiple uncertainties</topic><topic>neural network</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Stability analysis</topic><topic>strict‐feedback nonlinear system</topic><topic>Systems stability</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shou, Yingxin</creatorcontrib><creatorcontrib>Xu, Bin</creatorcontrib><creatorcontrib>Pu, Huayan</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><creatorcontrib>Shi, Zhongke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shou, Yingxin</au><au>Xu, Bin</au><au>Pu, Huayan</au><au>Luo, Jun</au><au>Shi, Zhongke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite learning control of strict‐feedback nonlinear system with unknown control gain function</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-09-10</date><risdate>2023</risdate><volume>33</volume><issue>13</issue><spage>7793</spage><epage>7810</epage><pages>7793-7810</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>The composite learning control with the heterogeneous estimator is proposed to deal with the multiple uncertainties of strict‐feedback nonlinear systems. The article applies the recorded data‐based neural learning and the disturbance observer (DOB) to learn the multiple uncertainties, including the nonlinear dynamics, the unknown control gain function (CGF), and the time‐varying disturbance. The lumped prediction error is constructed and included into the update law by neural approximation and disturbance observation. Furthermore, the asymmetric saturation nonlinearity (ASN) of the control input is represented by the smooth form model to ensure the input limitation, and a projection algorithm is adopted to avoid the singularity problem. The closed‐loop system stability is rigorously analyzed and the boundedness of the system tracking error is guaranteed. Through the tests of the third‐order nonlinear system and the autonomous underwater vehicle (AUV), it is observed that the proposed approach can improve the system tracking accuracy with the expected learning performance.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6797</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9115-4686</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2023-09, Vol.33 (13), p.7793-7810
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2844492676
source Wiley Online Library All Journals
subjects Algorithms
Autonomous underwater vehicles
Control systems
disturbance observer
Disturbance observers
Dynamical systems
Feedback
Learning
multiple uncertainties
neural network
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Stability analysis
strict‐feedback nonlinear system
Systems stability
Tracking errors
Uncertainty
title Composite learning control of strict‐feedback nonlinear system with unknown control gain function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20learning%20control%20of%20strict%E2%80%90feedback%20nonlinear%20system%20with%20unknown%20control%20gain%20function&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Shou,%20Yingxin&rft.date=2023-09-10&rft.volume=33&rft.issue=13&rft.spage=7793&rft.epage=7810&rft.pages=7793-7810&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6797&rft_dat=%3Cproquest_cross%3E2844492676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844492676&rft_id=info:pmid/&rfr_iscdi=true