Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering
Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging cla...
Gespeichert in:
Veröffentlicht in: | RSC advances 2023-07, Vol.13 (32), p.21971-21981 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21981 |
---|---|
container_issue | 32 |
container_start_page | 21971 |
container_title | RSC advances |
container_volume | 13 |
creator | Wysokowski, Marcin Macha owski, Tomasz Idaszek, Joanna Chlanda, Adrian Jaroszewicz, Jakub Heljak, Marcin Niemczak, Micha Piasecki, Adam Gajewska, Marta Ehrlich, Hermann wi szkowski, Wojciech Jesionowski, Teofil |
description | Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (
i.e.
, porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Modification of 3D spongin-derived carbon with tricalcium phosphate achieved in a deep eutectic solvent. The 3D carbon-tricalcium phosphate scaffold shows great potential for stem cell-based tissue engineering. |
doi_str_mv | 10.1039/d3ra02356g |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2844107374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844107374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-36a78a61ea53d5726ae3b25596ef7098f98adc3edf36e666f429013f977493f3</originalsourceid><addsrcrecordid>eNpdkk1r3DAQhk1oaEKaS-8pgl5KwK0-LNk6lZBN00IgUHI3sjzaVfBKrkYOhP75Kt10m1YXDbzPvJoPVdVbRj8yKvSnUSRDuZBqfVAdc9qomlOlX72Ij6pTxHtajpKMK_a6OhJt0wnVyuPq5wpgJrBksNlbgnF6gJBrg-gxw0icGZK3JvsYSHRk8NEHnH0qklgRa9IQQ23NZP2yJfMm4rwxGQha41ycRiQuJlIYINkjLkAgrH0ASD6s31SHzkwIp8_3SXX35eru8mt9c3v97fLiprYN17kWyrSdUQyMFKNsuTIgBi6lVuBaqjunOzNaAaMTCpRSrmRRJpxu20YLJ06qzzvbeRm2MNrSXzJTPye_Nemxj8b3_yrBb_p1fOjLfGUnWFccPjw7pPhjAcz91qOFaTIB4oI97xrWUMElK-j7_9D7uKRQ2nuiGkbbMvtCne8omyJiArevhtGnZ3W_Et8vfq_1usDvXta_R_8ssQBnOyCh3at__4X4Bfw3qUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844107374</pqid></control><display><type>article</type><title>Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Wysokowski, Marcin ; Macha owski, Tomasz ; Idaszek, Joanna ; Chlanda, Adrian ; Jaroszewicz, Jakub ; Heljak, Marcin ; Niemczak, Micha ; Piasecki, Adam ; Gajewska, Marta ; Ehrlich, Hermann ; wi szkowski, Wojciech ; Jesionowski, Teofil</creator><creatorcontrib>Wysokowski, Marcin ; Macha owski, Tomasz ; Idaszek, Joanna ; Chlanda, Adrian ; Jaroszewicz, Jakub ; Heljak, Marcin ; Niemczak, Micha ; Piasecki, Adam ; Gajewska, Marta ; Ehrlich, Hermann ; wi szkowski, Wojciech ; Jesionowski, Teofil</creatorcontrib><description>Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (
i.e.
, porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Modification of 3D spongin-derived carbon with tricalcium phosphate achieved in a deep eutectic solvent. The 3D carbon-tricalcium phosphate scaffold shows great potential for stem cell-based tissue engineering.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra02356g</identifier><identifier>PMID: 37483675</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Biocompatibility ; Biomedical materials ; Biomimetics ; Bone marrow ; Calcium phosphates ; Carbon ; Carbonaceous materials ; Chemistry ; Choline ; Composite materials ; Differentiation ; Production methods ; Regeneration (physiology) ; Scaffolds ; Solvents ; Stem cells ; Three dimensional composites ; Tissue engineering</subject><ispartof>RSC advances, 2023-07, Vol.13 (32), p.21971-21981</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-36a78a61ea53d5726ae3b25596ef7098f98adc3edf36e666f429013f977493f3</citedby><cites>FETCH-LOGICAL-c429t-36a78a61ea53d5726ae3b25596ef7098f98adc3edf36e666f429013f977493f3</cites><orcidid>0000-0003-0624-2716 ; 0000-0002-4364-8267 ; 0000-0003-4216-9974 ; 0000-0002-7808-8060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358318/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358318/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37483675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wysokowski, Marcin</creatorcontrib><creatorcontrib>Macha owski, Tomasz</creatorcontrib><creatorcontrib>Idaszek, Joanna</creatorcontrib><creatorcontrib>Chlanda, Adrian</creatorcontrib><creatorcontrib>Jaroszewicz, Jakub</creatorcontrib><creatorcontrib>Heljak, Marcin</creatorcontrib><creatorcontrib>Niemczak, Micha</creatorcontrib><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Gajewska, Marta</creatorcontrib><creatorcontrib>Ehrlich, Hermann</creatorcontrib><creatorcontrib>wi szkowski, Wojciech</creatorcontrib><creatorcontrib>Jesionowski, Teofil</creatorcontrib><title>Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (
i.e.
, porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Modification of 3D spongin-derived carbon with tricalcium phosphate achieved in a deep eutectic solvent. The 3D carbon-tricalcium phosphate scaffold shows great potential for stem cell-based tissue engineering.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bone marrow</subject><subject>Calcium phosphates</subject><subject>Carbon</subject><subject>Carbonaceous materials</subject><subject>Chemistry</subject><subject>Choline</subject><subject>Composite materials</subject><subject>Differentiation</subject><subject>Production methods</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Solvents</subject><subject>Stem cells</subject><subject>Three dimensional composites</subject><subject>Tissue engineering</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkk1r3DAQhk1oaEKaS-8pgl5KwK0-LNk6lZBN00IgUHI3sjzaVfBKrkYOhP75Kt10m1YXDbzPvJoPVdVbRj8yKvSnUSRDuZBqfVAdc9qomlOlX72Ij6pTxHtajpKMK_a6OhJt0wnVyuPq5wpgJrBksNlbgnF6gJBrg-gxw0icGZK3JvsYSHRk8NEHnH0qklgRa9IQQ23NZP2yJfMm4rwxGQha41ycRiQuJlIYINkjLkAgrH0ASD6s31SHzkwIp8_3SXX35eru8mt9c3v97fLiprYN17kWyrSdUQyMFKNsuTIgBi6lVuBaqjunOzNaAaMTCpRSrmRRJpxu20YLJ06qzzvbeRm2MNrSXzJTPye_Nemxj8b3_yrBb_p1fOjLfGUnWFccPjw7pPhjAcz91qOFaTIB4oI97xrWUMElK-j7_9D7uKRQ2nuiGkbbMvtCne8omyJiArevhtGnZ3W_Et8vfq_1usDvXta_R_8ssQBnOyCh3at__4X4Bfw3qUA</recordid><startdate>20230719</startdate><enddate>20230719</enddate><creator>Wysokowski, Marcin</creator><creator>Macha owski, Tomasz</creator><creator>Idaszek, Joanna</creator><creator>Chlanda, Adrian</creator><creator>Jaroszewicz, Jakub</creator><creator>Heljak, Marcin</creator><creator>Niemczak, Micha</creator><creator>Piasecki, Adam</creator><creator>Gajewska, Marta</creator><creator>Ehrlich, Hermann</creator><creator>wi szkowski, Wojciech</creator><creator>Jesionowski, Teofil</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0624-2716</orcidid><orcidid>https://orcid.org/0000-0002-4364-8267</orcidid><orcidid>https://orcid.org/0000-0003-4216-9974</orcidid><orcidid>https://orcid.org/0000-0002-7808-8060</orcidid></search><sort><creationdate>20230719</creationdate><title>Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering</title><author>Wysokowski, Marcin ; Macha owski, Tomasz ; Idaszek, Joanna ; Chlanda, Adrian ; Jaroszewicz, Jakub ; Heljak, Marcin ; Niemczak, Micha ; Piasecki, Adam ; Gajewska, Marta ; Ehrlich, Hermann ; wi szkowski, Wojciech ; Jesionowski, Teofil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-36a78a61ea53d5726ae3b25596ef7098f98adc3edf36e666f429013f977493f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bone marrow</topic><topic>Calcium phosphates</topic><topic>Carbon</topic><topic>Carbonaceous materials</topic><topic>Chemistry</topic><topic>Choline</topic><topic>Composite materials</topic><topic>Differentiation</topic><topic>Production methods</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Solvents</topic><topic>Stem cells</topic><topic>Three dimensional composites</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wysokowski, Marcin</creatorcontrib><creatorcontrib>Macha owski, Tomasz</creatorcontrib><creatorcontrib>Idaszek, Joanna</creatorcontrib><creatorcontrib>Chlanda, Adrian</creatorcontrib><creatorcontrib>Jaroszewicz, Jakub</creatorcontrib><creatorcontrib>Heljak, Marcin</creatorcontrib><creatorcontrib>Niemczak, Micha</creatorcontrib><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Gajewska, Marta</creatorcontrib><creatorcontrib>Ehrlich, Hermann</creatorcontrib><creatorcontrib>wi szkowski, Wojciech</creatorcontrib><creatorcontrib>Jesionowski, Teofil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wysokowski, Marcin</au><au>Macha owski, Tomasz</au><au>Idaszek, Joanna</au><au>Chlanda, Adrian</au><au>Jaroszewicz, Jakub</au><au>Heljak, Marcin</au><au>Niemczak, Micha</au><au>Piasecki, Adam</au><au>Gajewska, Marta</au><au>Ehrlich, Hermann</au><au>wi szkowski, Wojciech</au><au>Jesionowski, Teofil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2023-07-19</date><risdate>2023</risdate><volume>13</volume><issue>32</issue><spage>21971</spage><epage>21981</epage><pages>21971-21981</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Tissue engineering is a burgeoning field focused on repairing damaged tissues through the combination of bodily cells with highly porous scaffold biomaterials, which serve as templates for tissue regeneration, thus facilitating the growth of new tissue. Carbon materials, constituting an emerging class of superior materials, are currently experiencing remarkable scientific and technological advancements. Consequently, the development of novel 3D carbon-based composite materials has become significant for biomedicine. There is an urgent need for the development of hybrids that will combine the unique bioactivity of ceramics with the performance of carbonaceous materials. Considering these requirements, herein, we propose a straightforward method of producing a 3D carbon-based scaffold that resembles the structural features of spongin, even on the nanometric level of their hierarchical organization. The modification of spongin with calcium phosphate was achieved in a deep eutectic solvent (choline chloride : urea, 1 : 2). The holistic characterization of the scaffolds confirms their remarkable structural features (
i.e.
, porosity, connectivity), along with the biocompatibility of α-tricalcium phosphate (α-TCP), rendering them a promising candidate for stem cell-based tissue-engineering. Culturing human bone marrow mesenchymal stem cells (hMSC) on the surface of the biomimetic scaffold further verifies its growth-facilitating properties, promoting the differentiation of these cells in the osteogenesis direction. ALP activity was significantly higher in osteogenic medium compared to proliferation, indicating the differentiation of hMSC towards osteoblasts. However, no significant difference between C and C-αTCP in the same medium type was observed.
Modification of 3D spongin-derived carbon with tricalcium phosphate achieved in a deep eutectic solvent. The 3D carbon-tricalcium phosphate scaffold shows great potential for stem cell-based tissue engineering.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37483675</pmid><doi>10.1039/d3ra02356g</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0624-2716</orcidid><orcidid>https://orcid.org/0000-0002-4364-8267</orcidid><orcidid>https://orcid.org/0000-0003-4216-9974</orcidid><orcidid>https://orcid.org/0000-0002-7808-8060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2023-07, Vol.13 (32), p.21971-21981 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_journals_2844107374 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central |
subjects | Biocompatibility Biomedical materials Biomimetics Bone marrow Calcium phosphates Carbon Carbonaceous materials Chemistry Choline Composite materials Differentiation Production methods Regeneration (physiology) Scaffolds Solvents Stem cells Three dimensional composites Tissue engineering |
title | Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20eutectic%20solvent-assisted%20fabrication%20of%20bioinspired%203D%20carbon-calcium%20phosphate%20scaffolds%20for%20bone%20tissue%20engineering&rft.jtitle=RSC%20advances&rft.au=Wysokowski,%20Marcin&rft.date=2023-07-19&rft.volume=13&rft.issue=32&rft.spage=21971&rft.epage=21981&rft.pages=21971-21981&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra02356g&rft_dat=%3Cproquest_rsc_p%3E2844107374%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844107374&rft_id=info:pmid/37483675&rfr_iscdi=true |