First-order system least-squares finite element method for singularly perturbed Darcy equations
We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-process...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2023-07, Vol.57 (4), p.2283-2300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2300 |
---|---|
container_issue | 4 |
container_start_page | 2283 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 57 |
creator | Führer, Thomas Videman, Juha |
description | We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent,
i.e.
, independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented. |
doi_str_mv | 10.1051/m2an/2023049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844102977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844102977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWGpv_oCAV9fma3eTo1SrQsGLnkM2mdXIfrRJ9rD_3iztaYaX552BB6F7Sp4oKem2Z2bYMsI4EeoKrZgkoqgZFdfLzlhRS0Fu0SZG35CSqEqoslohvfchpmIMDgKOc0zQ4w5MjuJpMgEibv3gE2DooIch4R7S7-hwO2bcDz9TZ0I34yOENIUGHH4xwc4Ycjn5cYh36KY1XYTNZa7R9_71a_deHD7fPnbPh8JyQlNRyoZXjjpBJVNAG2OtlKwyYGsnjbA5sqCIMKXKJBV2YZ1qmeJcqZLzNXo43z2G8TRBTPpvnMKQX2omhaCEqbrO1OOZsmGMMUCrj8H3JsyaEr1Y1ItFfbHI_wFlCWa_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844102977</pqid></control><display><type>article</type><title>First-order system least-squares finite element method for singularly perturbed Darcy equations</title><source>Alma/SFX Local Collection</source><creator>Führer, Thomas ; Videman, Juha</creator><creatorcontrib>Führer, Thomas ; Videman, Juha</creatorcontrib><description>We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent,
i.e.
, independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.</description><identifier>ISSN: 2822-7840</identifier><identifier>EISSN: 2804-7214</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2023049</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Brinkman model ; Darcys law ; Equivalence ; Finite element analysis ; Finite element method ; Fluid flow ; Least squares ; Methods ; Numerical analysis ; Parameters ; Porous media ; Porous media flow ; Singular perturbation</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2023-07, Vol.57 (4), p.2283-2300</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</citedby><cites>FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</cites><orcidid>0000-0001-5034-6593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Videman, Juha</creatorcontrib><title>First-order system least-squares finite element method for singularly perturbed Darcy equations</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent,
i.e.
, independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.</description><subject>Approximation</subject><subject>Brinkman model</subject><subject>Darcys law</subject><subject>Equivalence</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Least squares</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Singular perturbation</subject><issn>2822-7840</issn><issn>2804-7214</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWGpv_oCAV9fma3eTo1SrQsGLnkM2mdXIfrRJ9rD_3iztaYaX552BB6F7Sp4oKem2Z2bYMsI4EeoKrZgkoqgZFdfLzlhRS0Fu0SZG35CSqEqoslohvfchpmIMDgKOc0zQ4w5MjuJpMgEibv3gE2DooIch4R7S7-hwO2bcDz9TZ0I34yOENIUGHH4xwc4Ycjn5cYh36KY1XYTNZa7R9_71a_deHD7fPnbPh8JyQlNRyoZXjjpBJVNAG2OtlKwyYGsnjbA5sqCIMKXKJBV2YZ1qmeJcqZLzNXo43z2G8TRBTPpvnMKQX2omhaCEqbrO1OOZsmGMMUCrj8H3JsyaEr1Y1ItFfbHI_wFlCWa_</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Führer, Thomas</creator><creator>Videman, Juha</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5034-6593</orcidid></search><sort><creationdate>20230701</creationdate><title>First-order system least-squares finite element method for singularly perturbed Darcy equations</title><author>Führer, Thomas ; Videman, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Brinkman model</topic><topic>Darcys law</topic><topic>Equivalence</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Least squares</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Singular perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Videman, Juha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Führer, Thomas</au><au>Videman, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order system least-squares finite element method for singularly perturbed Darcy equations</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>2283</spage><epage>2300</epage><pages>2283-2300</pages><issn>2822-7840</issn><eissn>2804-7214</eissn><eissn>1290-3841</eissn><abstract>We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent,
i.e.
, independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2023049</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5034-6593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2822-7840 |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2023-07, Vol.57 (4), p.2283-2300 |
issn | 2822-7840 2804-7214 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2844102977 |
source | Alma/SFX Local Collection |
subjects | Approximation Brinkman model Darcys law Equivalence Finite element analysis Finite element method Fluid flow Least squares Methods Numerical analysis Parameters Porous media Porous media flow Singular perturbation |
title | First-order system least-squares finite element method for singularly perturbed Darcy equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20system%20least-squares%20finite%20element%20method%20for%20singularly%20perturbed%20Darcy%20equations&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=F%C3%BChrer,%20Thomas&rft.date=2023-07-01&rft.volume=57&rft.issue=4&rft.spage=2283&rft.epage=2300&rft.pages=2283-2300&rft.issn=2822-7840&rft.eissn=2804-7214&rft_id=info:doi/10.1051/m2an/2023049&rft_dat=%3Cproquest_cross%3E2844102977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844102977&rft_id=info:pmid/&rfr_iscdi=true |