First-order system least-squares finite element method for singularly perturbed Darcy equations

We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-process...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2023-07, Vol.57 (4), p.2283-2300
Hauptverfasser: Führer, Thomas, Videman, Juha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2300
container_issue 4
container_start_page 2283
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 57
creator Führer, Thomas
Videman, Juha
description We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e. , independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.
doi_str_mv 10.1051/m2an/2023049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2844102977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2844102977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWGpv_oCAV9fma3eTo1SrQsGLnkM2mdXIfrRJ9rD_3iztaYaX552BB6F7Sp4oKem2Z2bYMsI4EeoKrZgkoqgZFdfLzlhRS0Fu0SZG35CSqEqoslohvfchpmIMDgKOc0zQ4w5MjuJpMgEibv3gE2DooIch4R7S7-hwO2bcDz9TZ0I34yOENIUGHH4xwc4Ycjn5cYh36KY1XYTNZa7R9_71a_deHD7fPnbPh8JyQlNRyoZXjjpBJVNAG2OtlKwyYGsnjbA5sqCIMKXKJBV2YZ1qmeJcqZLzNXo43z2G8TRBTPpvnMKQX2omhaCEqbrO1OOZsmGMMUCrj8H3JsyaEr1Y1ItFfbHI_wFlCWa_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844102977</pqid></control><display><type>article</type><title>First-order system least-squares finite element method for singularly perturbed Darcy equations</title><source>Alma/SFX Local Collection</source><creator>Führer, Thomas ; Videman, Juha</creator><creatorcontrib>Führer, Thomas ; Videman, Juha</creatorcontrib><description>We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e. , independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.</description><identifier>ISSN: 2822-7840</identifier><identifier>EISSN: 2804-7214</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2023049</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Approximation ; Brinkman model ; Darcys law ; Equivalence ; Finite element analysis ; Finite element method ; Fluid flow ; Least squares ; Methods ; Numerical analysis ; Parameters ; Porous media ; Porous media flow ; Singular perturbation</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2023-07, Vol.57 (4), p.2283-2300</ispartof><rights>2023. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</citedby><cites>FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</cites><orcidid>0000-0001-5034-6593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Videman, Juha</creatorcontrib><title>First-order system least-squares finite element method for singularly perturbed Darcy equations</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e. , independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.</description><subject>Approximation</subject><subject>Brinkman model</subject><subject>Darcys law</subject><subject>Equivalence</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Least squares</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Parameters</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Singular perturbation</subject><issn>2822-7840</issn><issn>2804-7214</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWGpv_oCAV9fma3eTo1SrQsGLnkM2mdXIfrRJ9rD_3iztaYaX552BB6F7Sp4oKem2Z2bYMsI4EeoKrZgkoqgZFdfLzlhRS0Fu0SZG35CSqEqoslohvfchpmIMDgKOc0zQ4w5MjuJpMgEibv3gE2DooIch4R7S7-hwO2bcDz9TZ0I34yOENIUGHH4xwc4Ycjn5cYh36KY1XYTNZa7R9_71a_deHD7fPnbPh8JyQlNRyoZXjjpBJVNAG2OtlKwyYGsnjbA5sqCIMKXKJBV2YZ1qmeJcqZLzNXo43z2G8TRBTPpvnMKQX2omhaCEqbrO1OOZsmGMMUCrj8H3JsyaEr1Y1ItFfbHI_wFlCWa_</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Führer, Thomas</creator><creator>Videman, Juha</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5034-6593</orcidid></search><sort><creationdate>20230701</creationdate><title>First-order system least-squares finite element method for singularly perturbed Darcy equations</title><author>Führer, Thomas ; Videman, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-58b36d1d41829e1bacc8826aec7d8a4ce1bce904a598b314cd1d4d9f293399533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Brinkman model</topic><topic>Darcys law</topic><topic>Equivalence</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Least squares</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Parameters</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Singular perturbation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Videman, Juha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Führer, Thomas</au><au>Videman, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order system least-squares finite element method for singularly perturbed Darcy equations</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>57</volume><issue>4</issue><spage>2283</spage><epage>2300</epage><pages>2283-2300</pages><issn>2822-7840</issn><eissn>2804-7214</eissn><eissn>1290-3841</eissn><abstract>We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e. , independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2023049</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5034-6593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2822-7840
ispartof ESAIM. Mathematical modelling and numerical analysis, 2023-07, Vol.57 (4), p.2283-2300
issn 2822-7840
2804-7214
1290-3841
language eng
recordid cdi_proquest_journals_2844102977
source Alma/SFX Local Collection
subjects Approximation
Brinkman model
Darcys law
Equivalence
Finite element analysis
Finite element method
Fluid flow
Least squares
Methods
Numerical analysis
Parameters
Porous media
Porous media flow
Singular perturbation
title First-order system least-squares finite element method for singularly perturbed Darcy equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20system%20least-squares%20finite%20element%20method%20for%20singularly%20perturbed%20Darcy%20equations&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=F%C3%BChrer,%20Thomas&rft.date=2023-07-01&rft.volume=57&rft.issue=4&rft.spage=2283&rft.epage=2300&rft.pages=2283-2300&rft.issn=2822-7840&rft.eissn=2804-7214&rft_id=info:doi/10.1051/m2an/2023049&rft_dat=%3Cproquest_cross%3E2844102977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844102977&rft_id=info:pmid/&rfr_iscdi=true