Local and Global Information in Obstacle Detection on Railway Tracks

Reliable obstacle detection on railways could help prevent collisions that result in injuries and potentially damage or derail the train. Unfortunately, generic object detectors do not have enough classes to account for all possible scenarios, and datasets featuring objects on railways are challengi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Brucker, Matthias, Cramariuc, Andrei, Cornelius von Einem, Siegwart, Roland, Cadena, Cesar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Brucker, Matthias
Cramariuc, Andrei
Cornelius von Einem
Siegwart, Roland
Cadena, Cesar
description Reliable obstacle detection on railways could help prevent collisions that result in injuries and potentially damage or derail the train. Unfortunately, generic object detectors do not have enough classes to account for all possible scenarios, and datasets featuring objects on railways are challenging to obtain. We propose utilizing a shallow network to learn railway segmentation from normal railway images. The limited receptive field of the network prevents overconfident predictions and allows the network to focus on the locally very distinct and repetitive patterns of the railway environment. Additionally, we explore the controlled inclusion of global information by learning to hallucinate obstacle-free images. We evaluate our method on a custom dataset featuring railway images with artificially augmented obstacles. Our proposed method outperforms other learning-based baseline methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2843961528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843961528</sourcerecordid><originalsourceid>FETCH-proquest_journals_28439615283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8clPTsxRSMxLUXDPyU8CMj3z0vKLchNLMvPzFDLzFPyTiksSk3NSFVxSS1KTwaJAFJSYmVOeWKkQUpSYnF3Mw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRhYmxpZmhqZGFsbEqQIA6K05_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843961528</pqid></control><display><type>article</type><title>Local and Global Information in Obstacle Detection on Railway Tracks</title><source>Free E- Journals</source><creator>Brucker, Matthias ; Cramariuc, Andrei ; Cornelius von Einem ; Siegwart, Roland ; Cadena, Cesar</creator><creatorcontrib>Brucker, Matthias ; Cramariuc, Andrei ; Cornelius von Einem ; Siegwart, Roland ; Cadena, Cesar</creatorcontrib><description>Reliable obstacle detection on railways could help prevent collisions that result in injuries and potentially damage or derail the train. Unfortunately, generic object detectors do not have enough classes to account for all possible scenarios, and datasets featuring objects on railways are challenging to obtain. We propose utilizing a shallow network to learn railway segmentation from normal railway images. The limited receptive field of the network prevents overconfident predictions and allows the network to focus on the locally very distinct and repetitive patterns of the railway environment. Additionally, we explore the controlled inclusion of global information by learning to hallucinate obstacle-free images. We evaluate our method on a custom dataset featuring railway images with artificially augmented obstacles. Our proposed method outperforms other learning-based baseline methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Image segmentation ; Injury prevention ; Learning ; Obstacle avoidance ; Railway tracks ; Railways</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Brucker, Matthias</creatorcontrib><creatorcontrib>Cramariuc, Andrei</creatorcontrib><creatorcontrib>Cornelius von Einem</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Cadena, Cesar</creatorcontrib><title>Local and Global Information in Obstacle Detection on Railway Tracks</title><title>arXiv.org</title><description>Reliable obstacle detection on railways could help prevent collisions that result in injuries and potentially damage or derail the train. Unfortunately, generic object detectors do not have enough classes to account for all possible scenarios, and datasets featuring objects on railways are challenging to obtain. We propose utilizing a shallow network to learn railway segmentation from normal railway images. The limited receptive field of the network prevents overconfident predictions and allows the network to focus on the locally very distinct and repetitive patterns of the railway environment. Additionally, we explore the controlled inclusion of global information by learning to hallucinate obstacle-free images. We evaluate our method on a custom dataset featuring railway images with artificially augmented obstacles. Our proposed method outperforms other learning-based baseline methods.</description><subject>Datasets</subject><subject>Image segmentation</subject><subject>Injury prevention</subject><subject>Learning</subject><subject>Obstacle avoidance</subject><subject>Railway tracks</subject><subject>Railways</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8clPTsxRSMxLUXDPyU8CMj3z0vKLchNLMvPzFDLzFPyTiksSk3NSFVxSS1KTwaJAFJSYmVOeWKkQUpSYnF3Mw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRhYmxpZmhqZGFsbEqQIA6K05_w</recordid><startdate>20230728</startdate><enddate>20230728</enddate><creator>Brucker, Matthias</creator><creator>Cramariuc, Andrei</creator><creator>Cornelius von Einem</creator><creator>Siegwart, Roland</creator><creator>Cadena, Cesar</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230728</creationdate><title>Local and Global Information in Obstacle Detection on Railway Tracks</title><author>Brucker, Matthias ; Cramariuc, Andrei ; Cornelius von Einem ; Siegwart, Roland ; Cadena, Cesar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28439615283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>Image segmentation</topic><topic>Injury prevention</topic><topic>Learning</topic><topic>Obstacle avoidance</topic><topic>Railway tracks</topic><topic>Railways</topic><toplevel>online_resources</toplevel><creatorcontrib>Brucker, Matthias</creatorcontrib><creatorcontrib>Cramariuc, Andrei</creatorcontrib><creatorcontrib>Cornelius von Einem</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><creatorcontrib>Cadena, Cesar</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brucker, Matthias</au><au>Cramariuc, Andrei</au><au>Cornelius von Einem</au><au>Siegwart, Roland</au><au>Cadena, Cesar</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local and Global Information in Obstacle Detection on Railway Tracks</atitle><jtitle>arXiv.org</jtitle><date>2023-07-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Reliable obstacle detection on railways could help prevent collisions that result in injuries and potentially damage or derail the train. Unfortunately, generic object detectors do not have enough classes to account for all possible scenarios, and datasets featuring objects on railways are challenging to obtain. We propose utilizing a shallow network to learn railway segmentation from normal railway images. The limited receptive field of the network prevents overconfident predictions and allows the network to focus on the locally very distinct and repetitive patterns of the railway environment. Additionally, we explore the controlled inclusion of global information by learning to hallucinate obstacle-free images. We evaluate our method on a custom dataset featuring railway images with artificially augmented obstacles. Our proposed method outperforms other learning-based baseline methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2843961528
source Free E- Journals
subjects Datasets
Image segmentation
Injury prevention
Learning
Obstacle avoidance
Railway tracks
Railways
title Local and Global Information in Obstacle Detection on Railway Tracks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A44%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20and%20Global%20Information%20in%20Obstacle%20Detection%20on%20Railway%20Tracks&rft.jtitle=arXiv.org&rft.au=Brucker,%20Matthias&rft.date=2023-07-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2843961528%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843961528&rft_id=info:pmid/&rfr_iscdi=true