Quantification of nitrate contamination sources in groundwater from the Anayari catchment using major ions, stable isotopes, and Bayesian mixing model, Ghana

Nitrate (NO 3 − ) contamination threatens the quality of groundwater in many agricultural areas, and excessive NO 3 − consumption may cause adverse human health implications. Determination of NO 3 − occurrence and its source of contamination is essential for the effective management of groundwater q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental earth sciences 2023-08, Vol.82 (16), p.381, Article 381
Hauptverfasser: Zakaria, Nafisatu, Gibrilla, Abass, Owusu-Nimo, Frederick, Adomako, Dickson, Anornu, Geophrey K., Fianko, Joseph R., Gyamfi, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 381
container_title Environmental earth sciences
container_volume 82
creator Zakaria, Nafisatu
Gibrilla, Abass
Owusu-Nimo, Frederick
Adomako, Dickson
Anornu, Geophrey K.
Fianko, Joseph R.
Gyamfi, Charles
description Nitrate (NO 3 − ) contamination threatens the quality of groundwater in many agricultural areas, and excessive NO 3 − consumption may cause adverse human health implications. Determination of NO 3 − occurrence and its source of contamination is essential for the effective management of groundwater quality. The characteristics of NO 3 − in groundwater from the Anayari Catchment were analysed using hydrogeochemical and stable isotope data. Concentrations of major ions and the isotopic values of δ 2 H, δ 18 O, δ 15 N–NO 3 − and δ 18 O–NO 3 − of groundwater and δ 15 N–NO 3 − and δ 18 O–NO 3 − of potential NO 3 − source materials (precipitation (P), chemical fertilisers (CF), soil nitrogen (SN), and sewage or manure (S/M)) in the area were determined and used to identify groundwater NO 3 − sources. The Bayesian mixing model was applied to estimate the proportional contributions of NO 3 − load in boreholes (BH) and hand–dug wells (HDW) in the Catchment. The NO 3 − levels were mostly lower than the WHO guideline limit. Correlation analyses indicate that the source of NO 3 − was mostly livestock and septic waste. The results from δ 15 N–NO 3 − and δ 18 O–NO 3 − showed that the contribution of NO 3 − from potential sources is in the order of S/M > SN > CF > P, with denitrification influencing the NO 3 − concentration in some of the groundwater sources. The Bayesian mixing model demonstrated that by proportion, SN and S/M were the major NO 3 − contributors to BH and HDW, respectively. There is a need to institute and enforce proper manure application management strategies to reduce the risk of groundwater contamination from manure nutrients.
doi_str_mv 10.1007/s12665-023-11068-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2843481518</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843481518</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-bebab8b157a1b3f693a3bca9a18898d7bfdd52bd52ac60265811295b09227ce73</originalsourceid><addsrcrecordid>eNp9UdtKxDAQLaKgqD_g04CvVnPZpumjijcQRNDnMGnT3SzbZE1S3P0Y_9VoRd8cGGaYOecMwymKE0rOKSH1RaRMiKokjJeUEiHLzU5xQKUQpWBNs_vbS7JfHMe4JDk45Q0RB8XH84gu2d62mKx34HtwNgVMBlrvEg7WTYvox9CaCNbBPPjRde8ZE6APfoC0MHDpcIvBQtZpF4NxCcZo3RwGXPoAWSGeQUyoVwZs9MmvTR6g6-AKtyZadDDYzTfBd2Z1BncLdHhU7PW4iub4px4Wr7c3L9f35ePT3cP15WOJfMZSqY1GLTWtaqSa96LhyHWLDVIpG9nVuu-6iumc2ArCRCUpZU2lScNY3ZqaHxank-46-LfRxKSW-V2XTyomZ3wmaUVlRrEJ1QYfYzC9Wgc7YNgqStSXE2pyQmUn1LcTapNJfCLFDHZzE_6k_2F9Agnwj8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843481518</pqid></control><display><type>article</type><title>Quantification of nitrate contamination sources in groundwater from the Anayari catchment using major ions, stable isotopes, and Bayesian mixing model, Ghana</title><source>SpringerNature Journals</source><creator>Zakaria, Nafisatu ; Gibrilla, Abass ; Owusu-Nimo, Frederick ; Adomako, Dickson ; Anornu, Geophrey K. ; Fianko, Joseph R. ; Gyamfi, Charles</creator><creatorcontrib>Zakaria, Nafisatu ; Gibrilla, Abass ; Owusu-Nimo, Frederick ; Adomako, Dickson ; Anornu, Geophrey K. ; Fianko, Joseph R. ; Gyamfi, Charles</creatorcontrib><description>Nitrate (NO 3 − ) contamination threatens the quality of groundwater in many agricultural areas, and excessive NO 3 − consumption may cause adverse human health implications. Determination of NO 3 − occurrence and its source of contamination is essential for the effective management of groundwater quality. The characteristics of NO 3 − in groundwater from the Anayari Catchment were analysed using hydrogeochemical and stable isotope data. Concentrations of major ions and the isotopic values of δ 2 H, δ 18 O, δ 15 N–NO 3 − and δ 18 O–NO 3 − of groundwater and δ 15 N–NO 3 − and δ 18 O–NO 3 − of potential NO 3 − source materials (precipitation (P), chemical fertilisers (CF), soil nitrogen (SN), and sewage or manure (S/M)) in the area were determined and used to identify groundwater NO 3 − sources. The Bayesian mixing model was applied to estimate the proportional contributions of NO 3 − load in boreholes (BH) and hand–dug wells (HDW) in the Catchment. The NO 3 − levels were mostly lower than the WHO guideline limit. Correlation analyses indicate that the source of NO 3 − was mostly livestock and septic waste. The results from δ 15 N–NO 3 − and δ 18 O–NO 3 − showed that the contribution of NO 3 − from potential sources is in the order of S/M &gt; SN &gt; CF &gt; P, with denitrification influencing the NO 3 − concentration in some of the groundwater sources. The Bayesian mixing model demonstrated that by proportion, SN and S/M were the major NO 3 − contributors to BH and HDW, respectively. There is a need to institute and enforce proper manure application management strategies to reduce the risk of groundwater contamination from manure nutrients.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-023-11068-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agrochemicals ; Bayesian analysis ; Bayesian theory ; Biogeosciences ; Boreholes ; Catchment area ; Catchments ; Contamination ; Correlation analysis ; Denitrification ; Dug wells ; Earth and Environmental Science ; Earth Sciences ; Environmental Science and Engineering ; Farmyard manure ; Geochemistry ; Geology ; Groundwater ; Groundwater pollution ; Groundwater quality ; Groundwater sources ; Hydrogeochemistry ; Hydrology/Water Resources ; Ions ; Isotopes ; Livestock ; Manures ; Nitrates ; Nutrients ; Original Article ; Probability theory ; Risk reduction ; Sewage ; Soil chemistry ; Soil contamination ; Stable isotopes ; Terrestrial Pollution ; Water quality</subject><ispartof>Environmental earth sciences, 2023-08, Vol.82 (16), p.381, Article 381</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-bebab8b157a1b3f693a3bca9a18898d7bfdd52bd52ac60265811295b09227ce73</citedby><cites>FETCH-LOGICAL-a342t-bebab8b157a1b3f693a3bca9a18898d7bfdd52bd52ac60265811295b09227ce73</cites><orcidid>0000-0002-1417-0858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-023-11068-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-023-11068-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zakaria, Nafisatu</creatorcontrib><creatorcontrib>Gibrilla, Abass</creatorcontrib><creatorcontrib>Owusu-Nimo, Frederick</creatorcontrib><creatorcontrib>Adomako, Dickson</creatorcontrib><creatorcontrib>Anornu, Geophrey K.</creatorcontrib><creatorcontrib>Fianko, Joseph R.</creatorcontrib><creatorcontrib>Gyamfi, Charles</creatorcontrib><title>Quantification of nitrate contamination sources in groundwater from the Anayari catchment using major ions, stable isotopes, and Bayesian mixing model, Ghana</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Nitrate (NO 3 − ) contamination threatens the quality of groundwater in many agricultural areas, and excessive NO 3 − consumption may cause adverse human health implications. Determination of NO 3 − occurrence and its source of contamination is essential for the effective management of groundwater quality. The characteristics of NO 3 − in groundwater from the Anayari Catchment were analysed using hydrogeochemical and stable isotope data. Concentrations of major ions and the isotopic values of δ 2 H, δ 18 O, δ 15 N–NO 3 − and δ 18 O–NO 3 − of groundwater and δ 15 N–NO 3 − and δ 18 O–NO 3 − of potential NO 3 − source materials (precipitation (P), chemical fertilisers (CF), soil nitrogen (SN), and sewage or manure (S/M)) in the area were determined and used to identify groundwater NO 3 − sources. The Bayesian mixing model was applied to estimate the proportional contributions of NO 3 − load in boreholes (BH) and hand–dug wells (HDW) in the Catchment. The NO 3 − levels were mostly lower than the WHO guideline limit. Correlation analyses indicate that the source of NO 3 − was mostly livestock and septic waste. The results from δ 15 N–NO 3 − and δ 18 O–NO 3 − showed that the contribution of NO 3 − from potential sources is in the order of S/M &gt; SN &gt; CF &gt; P, with denitrification influencing the NO 3 − concentration in some of the groundwater sources. The Bayesian mixing model demonstrated that by proportion, SN and S/M were the major NO 3 − contributors to BH and HDW, respectively. There is a need to institute and enforce proper manure application management strategies to reduce the risk of groundwater contamination from manure nutrients.</description><subject>Agrochemicals</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Biogeosciences</subject><subject>Boreholes</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Contamination</subject><subject>Correlation analysis</subject><subject>Denitrification</subject><subject>Dug wells</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental Science and Engineering</subject><subject>Farmyard manure</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Groundwater quality</subject><subject>Groundwater sources</subject><subject>Hydrogeochemistry</subject><subject>Hydrology/Water Resources</subject><subject>Ions</subject><subject>Isotopes</subject><subject>Livestock</subject><subject>Manures</subject><subject>Nitrates</subject><subject>Nutrients</subject><subject>Original Article</subject><subject>Probability theory</subject><subject>Risk reduction</subject><subject>Sewage</subject><subject>Soil chemistry</subject><subject>Soil contamination</subject><subject>Stable isotopes</subject><subject>Terrestrial Pollution</subject><subject>Water quality</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UdtKxDAQLaKgqD_g04CvVnPZpumjijcQRNDnMGnT3SzbZE1S3P0Y_9VoRd8cGGaYOecMwymKE0rOKSH1RaRMiKokjJeUEiHLzU5xQKUQpWBNs_vbS7JfHMe4JDk45Q0RB8XH84gu2d62mKx34HtwNgVMBlrvEg7WTYvox9CaCNbBPPjRde8ZE6APfoC0MHDpcIvBQtZpF4NxCcZo3RwGXPoAWSGeQUyoVwZs9MmvTR6g6-AKtyZadDDYzTfBd2Z1BncLdHhU7PW4iub4px4Wr7c3L9f35ePT3cP15WOJfMZSqY1GLTWtaqSa96LhyHWLDVIpG9nVuu-6iumc2ArCRCUpZU2lScNY3ZqaHxank-46-LfRxKSW-V2XTyomZ3wmaUVlRrEJ1QYfYzC9Wgc7YNgqStSXE2pyQmUn1LcTapNJfCLFDHZzE_6k_2F9Agnwj8w</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zakaria, Nafisatu</creator><creator>Gibrilla, Abass</creator><creator>Owusu-Nimo, Frederick</creator><creator>Adomako, Dickson</creator><creator>Anornu, Geophrey K.</creator><creator>Fianko, Joseph R.</creator><creator>Gyamfi, Charles</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1417-0858</orcidid></search><sort><creationdate>20230801</creationdate><title>Quantification of nitrate contamination sources in groundwater from the Anayari catchment using major ions, stable isotopes, and Bayesian mixing model, Ghana</title><author>Zakaria, Nafisatu ; Gibrilla, Abass ; Owusu-Nimo, Frederick ; Adomako, Dickson ; Anornu, Geophrey K. ; Fianko, Joseph R. ; Gyamfi, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-bebab8b157a1b3f693a3bca9a18898d7bfdd52bd52ac60265811295b09227ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agrochemicals</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Biogeosciences</topic><topic>Boreholes</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Contamination</topic><topic>Correlation analysis</topic><topic>Denitrification</topic><topic>Dug wells</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental Science and Engineering</topic><topic>Farmyard manure</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Groundwater quality</topic><topic>Groundwater sources</topic><topic>Hydrogeochemistry</topic><topic>Hydrology/Water Resources</topic><topic>Ions</topic><topic>Isotopes</topic><topic>Livestock</topic><topic>Manures</topic><topic>Nitrates</topic><topic>Nutrients</topic><topic>Original Article</topic><topic>Probability theory</topic><topic>Risk reduction</topic><topic>Sewage</topic><topic>Soil chemistry</topic><topic>Soil contamination</topic><topic>Stable isotopes</topic><topic>Terrestrial Pollution</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zakaria, Nafisatu</creatorcontrib><creatorcontrib>Gibrilla, Abass</creatorcontrib><creatorcontrib>Owusu-Nimo, Frederick</creatorcontrib><creatorcontrib>Adomako, Dickson</creatorcontrib><creatorcontrib>Anornu, Geophrey K.</creatorcontrib><creatorcontrib>Fianko, Joseph R.</creatorcontrib><creatorcontrib>Gyamfi, Charles</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zakaria, Nafisatu</au><au>Gibrilla, Abass</au><au>Owusu-Nimo, Frederick</au><au>Adomako, Dickson</au><au>Anornu, Geophrey K.</au><au>Fianko, Joseph R.</au><au>Gyamfi, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of nitrate contamination sources in groundwater from the Anayari catchment using major ions, stable isotopes, and Bayesian mixing model, Ghana</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>82</volume><issue>16</issue><spage>381</spage><pages>381-</pages><artnum>381</artnum><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Nitrate (NO 3 − ) contamination threatens the quality of groundwater in many agricultural areas, and excessive NO 3 − consumption may cause adverse human health implications. Determination of NO 3 − occurrence and its source of contamination is essential for the effective management of groundwater quality. The characteristics of NO 3 − in groundwater from the Anayari Catchment were analysed using hydrogeochemical and stable isotope data. Concentrations of major ions and the isotopic values of δ 2 H, δ 18 O, δ 15 N–NO 3 − and δ 18 O–NO 3 − of groundwater and δ 15 N–NO 3 − and δ 18 O–NO 3 − of potential NO 3 − source materials (precipitation (P), chemical fertilisers (CF), soil nitrogen (SN), and sewage or manure (S/M)) in the area were determined and used to identify groundwater NO 3 − sources. The Bayesian mixing model was applied to estimate the proportional contributions of NO 3 − load in boreholes (BH) and hand–dug wells (HDW) in the Catchment. The NO 3 − levels were mostly lower than the WHO guideline limit. Correlation analyses indicate that the source of NO 3 − was mostly livestock and septic waste. The results from δ 15 N–NO 3 − and δ 18 O–NO 3 − showed that the contribution of NO 3 − from potential sources is in the order of S/M &gt; SN &gt; CF &gt; P, with denitrification influencing the NO 3 − concentration in some of the groundwater sources. The Bayesian mixing model demonstrated that by proportion, SN and S/M were the major NO 3 − contributors to BH and HDW, respectively. There is a need to institute and enforce proper manure application management strategies to reduce the risk of groundwater contamination from manure nutrients.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12665-023-11068-x</doi><orcidid>https://orcid.org/0000-0002-1417-0858</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-6280
ispartof Environmental earth sciences, 2023-08, Vol.82 (16), p.381, Article 381
issn 1866-6280
1866-6299
language eng
recordid cdi_proquest_journals_2843481518
source SpringerNature Journals
subjects Agrochemicals
Bayesian analysis
Bayesian theory
Biogeosciences
Boreholes
Catchment area
Catchments
Contamination
Correlation analysis
Denitrification
Dug wells
Earth and Environmental Science
Earth Sciences
Environmental Science and Engineering
Farmyard manure
Geochemistry
Geology
Groundwater
Groundwater pollution
Groundwater quality
Groundwater sources
Hydrogeochemistry
Hydrology/Water Resources
Ions
Isotopes
Livestock
Manures
Nitrates
Nutrients
Original Article
Probability theory
Risk reduction
Sewage
Soil chemistry
Soil contamination
Stable isotopes
Terrestrial Pollution
Water quality
title Quantification of nitrate contamination sources in groundwater from the Anayari catchment using major ions, stable isotopes, and Bayesian mixing model, Ghana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A35%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20nitrate%20contamination%20sources%20in%20groundwater%20from%20the%20Anayari%20catchment%20using%20major%20ions,%20stable%20isotopes,%20and%20Bayesian%20mixing%20model,%20Ghana&rft.jtitle=Environmental%20earth%20sciences&rft.au=Zakaria,%20Nafisatu&rft.date=2023-08-01&rft.volume=82&rft.issue=16&rft.spage=381&rft.pages=381-&rft.artnum=381&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-023-11068-x&rft_dat=%3Cproquest_cross%3E2843481518%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843481518&rft_id=info:pmid/&rfr_iscdi=true