Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning
Femtosecond laser processing is widely used in the micromachining of hard and brittle materials. Preparation of tapered microchannels with customizable cross-sections in silica glass using ultrafast lasers is of great significance in the field of microfluidic applications. In this paper, the width a...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2023-10, Vol.34 (7), p.2907-2924 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2924 |
---|---|
container_issue | 7 |
container_start_page | 2907 |
container_title | Journal of intelligent manufacturing |
container_volume | 34 |
creator | Liao, Kai Wang, Wenjun Mei, Xuesong Tian, Wenwen Yuan, Hai Wang, Mingqiong Wang, Bozhe |
description | Femtosecond laser processing is widely used in the micromachining of hard and brittle materials. Preparation of tapered microchannels with customizable cross-sections in silica glass using ultrafast lasers is of great significance in the field of microfluidic applications. In this paper, the width and depth of tapered microchannel in silica glass are predicted by combining theoretical modeling and machine learning. The functional relationship between laser processing parameters and microchannel width is obtained by theoretical modeling and introducing correction coefficients. The estimated model width is highly consistent with the experimental results. To solve the complex nonlinear mapping relationship between microchannel depth and processing parameters, a machine learning method based on a backpropagation neural network algorithm is proposed. By reasonably selecting model parameters, accurate prediction of microchannel depth is achieved with the corresponding average relative prediction error of 5.174%. Based on the proposed method, an effective parameter optimization strategy for achieving microchannels of specific sizes is developed. This method provides a new scheme for size prediction and controllable fabrication of silica glass microchannels with a femtosecond laser. Moreover, the proposed approach significantly reduces the time and cost of trial and error during actual processing and product development. |
doi_str_mv | 10.1007/s10845-022-01950-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2843479621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843479621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46e5afc9e4177934941946778697467cc0cd81f966752a153e64a01f939edd913</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19WkzUezlMEvGHChrkMmfW0ztMmYdJCZvf_b6AjuXD24OeeFdxG6pOSaEiJvEiU14wUpy4JQxUmxP0IzymVZ1JTxYzQjiouCc8pP0VlKa0KIqgWdoc-X3mwAR-i2g5lc8Di0eMpRhAaPzsZge-M9DAk7j5MbnDW4G0xK2KyykanVDrcwTiGBDb7B-Q0i_nBTj6ceQoQpKwMeQwOD8x02mRmN7Z0HPICJPofn6KQ1Q4KL3zlHb_d3r4vHYvn88LS4XRa2omoqmABuWquAUSlVxRSjigkpa6FkntYS29S0VUJIXhrKKxDMkBxUCppG0WqOrg57NzG8byFNeh220ecvdVmzikklym-qPFD5-pQitHoT3WjiTlOiv-vWh7p1rlv_1K33WaoOUsqw7yD-rf7H-gKbL4T7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843479621</pqid></control><display><type>article</type><title>Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liao, Kai ; Wang, Wenjun ; Mei, Xuesong ; Tian, Wenwen ; Yuan, Hai ; Wang, Mingqiong ; Wang, Bozhe</creator><creatorcontrib>Liao, Kai ; Wang, Wenjun ; Mei, Xuesong ; Tian, Wenwen ; Yuan, Hai ; Wang, Mingqiong ; Wang, Bozhe</creatorcontrib><description>Femtosecond laser processing is widely used in the micromachining of hard and brittle materials. Preparation of tapered microchannels with customizable cross-sections in silica glass using ultrafast lasers is of great significance in the field of microfluidic applications. In this paper, the width and depth of tapered microchannel in silica glass are predicted by combining theoretical modeling and machine learning. The functional relationship between laser processing parameters and microchannel width is obtained by theoretical modeling and introducing correction coefficients. The estimated model width is highly consistent with the experimental results. To solve the complex nonlinear mapping relationship between microchannel depth and processing parameters, a machine learning method based on a backpropagation neural network algorithm is proposed. By reasonably selecting model parameters, accurate prediction of microchannel depth is achieved with the corresponding average relative prediction error of 5.174%. Based on the proposed method, an effective parameter optimization strategy for achieving microchannels of specific sizes is developed. This method provides a new scheme for size prediction and controllable fabrication of silica glass microchannels with a femtosecond laser. Moreover, the proposed approach significantly reduces the time and cost of trial and error during actual processing and product development.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-022-01950-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ablation ; Advanced manufacturing technologies ; Algorithms ; Back propagation networks ; Brittle materials ; Business and Management ; Control ; Controllability ; Fabrication ; Laser processing ; Lasers ; Machine learning ; Machines ; Manufacturing ; Mathematical models ; Mechatronics ; Microchannels ; Micromachining ; Modelling ; Neural networks ; Optimization ; Process parameters ; Processes ; Product development ; Production ; Robotics ; Silica ; Silica glass ; Ultrafast lasers</subject><ispartof>Journal of intelligent manufacturing, 2023-10, Vol.34 (7), p.2907-2924</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46e5afc9e4177934941946778697467cc0cd81f966752a153e64a01f939edd913</citedby><cites>FETCH-LOGICAL-c319t-46e5afc9e4177934941946778697467cc0cd81f966752a153e64a01f939edd913</cites><orcidid>0000-0002-2562-4077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-022-01950-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-022-01950-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liao, Kai</creatorcontrib><creatorcontrib>Wang, Wenjun</creatorcontrib><creatorcontrib>Mei, Xuesong</creatorcontrib><creatorcontrib>Tian, Wenwen</creatorcontrib><creatorcontrib>Yuan, Hai</creatorcontrib><creatorcontrib>Wang, Mingqiong</creatorcontrib><creatorcontrib>Wang, Bozhe</creatorcontrib><title>Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Femtosecond laser processing is widely used in the micromachining of hard and brittle materials. Preparation of tapered microchannels with customizable cross-sections in silica glass using ultrafast lasers is of great significance in the field of microfluidic applications. In this paper, the width and depth of tapered microchannel in silica glass are predicted by combining theoretical modeling and machine learning. The functional relationship between laser processing parameters and microchannel width is obtained by theoretical modeling and introducing correction coefficients. The estimated model width is highly consistent with the experimental results. To solve the complex nonlinear mapping relationship between microchannel depth and processing parameters, a machine learning method based on a backpropagation neural network algorithm is proposed. By reasonably selecting model parameters, accurate prediction of microchannel depth is achieved with the corresponding average relative prediction error of 5.174%. Based on the proposed method, an effective parameter optimization strategy for achieving microchannels of specific sizes is developed. This method provides a new scheme for size prediction and controllable fabrication of silica glass microchannels with a femtosecond laser. Moreover, the proposed approach significantly reduces the time and cost of trial and error during actual processing and product development.</description><subject>Ablation</subject><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Brittle materials</subject><subject>Business and Management</subject><subject>Control</subject><subject>Controllability</subject><subject>Fabrication</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Microchannels</subject><subject>Micromachining</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Processes</subject><subject>Product development</subject><subject>Production</subject><subject>Robotics</subject><subject>Silica</subject><subject>Silica glass</subject><subject>Ultrafast lasers</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcB19WkzUezlMEvGHChrkMmfW0ztMmYdJCZvf_b6AjuXD24OeeFdxG6pOSaEiJvEiU14wUpy4JQxUmxP0IzymVZ1JTxYzQjiouCc8pP0VlKa0KIqgWdoc-X3mwAR-i2g5lc8Di0eMpRhAaPzsZge-M9DAk7j5MbnDW4G0xK2KyykanVDrcwTiGBDb7B-Q0i_nBTj6ceQoQpKwMeQwOD8x02mRmN7Z0HPICJPofn6KQ1Q4KL3zlHb_d3r4vHYvn88LS4XRa2omoqmABuWquAUSlVxRSjigkpa6FkntYS29S0VUJIXhrKKxDMkBxUCppG0WqOrg57NzG8byFNeh220ecvdVmzikklym-qPFD5-pQitHoT3WjiTlOiv-vWh7p1rlv_1K33WaoOUsqw7yD-rf7H-gKbL4T7</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Liao, Kai</creator><creator>Wang, Wenjun</creator><creator>Mei, Xuesong</creator><creator>Tian, Wenwen</creator><creator>Yuan, Hai</creator><creator>Wang, Mingqiong</creator><creator>Wang, Bozhe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2562-4077</orcidid></search><sort><creationdate>20231001</creationdate><title>Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning</title><author>Liao, Kai ; Wang, Wenjun ; Mei, Xuesong ; Tian, Wenwen ; Yuan, Hai ; Wang, Mingqiong ; Wang, Bozhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46e5afc9e4177934941946778697467cc0cd81f966752a153e64a01f939edd913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Brittle materials</topic><topic>Business and Management</topic><topic>Control</topic><topic>Controllability</topic><topic>Fabrication</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Microchannels</topic><topic>Micromachining</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Processes</topic><topic>Product development</topic><topic>Production</topic><topic>Robotics</topic><topic>Silica</topic><topic>Silica glass</topic><topic>Ultrafast lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Kai</creatorcontrib><creatorcontrib>Wang, Wenjun</creatorcontrib><creatorcontrib>Mei, Xuesong</creatorcontrib><creatorcontrib>Tian, Wenwen</creatorcontrib><creatorcontrib>Yuan, Hai</creatorcontrib><creatorcontrib>Wang, Mingqiong</creatorcontrib><creatorcontrib>Wang, Bozhe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Kai</au><au>Wang, Wenjun</au><au>Mei, Xuesong</au><au>Tian, Wenwen</au><au>Yuan, Hai</au><au>Wang, Mingqiong</au><au>Wang, Bozhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>34</volume><issue>7</issue><spage>2907</spage><epage>2924</epage><pages>2907-2924</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Femtosecond laser processing is widely used in the micromachining of hard and brittle materials. Preparation of tapered microchannels with customizable cross-sections in silica glass using ultrafast lasers is of great significance in the field of microfluidic applications. In this paper, the width and depth of tapered microchannel in silica glass are predicted by combining theoretical modeling and machine learning. The functional relationship between laser processing parameters and microchannel width is obtained by theoretical modeling and introducing correction coefficients. The estimated model width is highly consistent with the experimental results. To solve the complex nonlinear mapping relationship between microchannel depth and processing parameters, a machine learning method based on a backpropagation neural network algorithm is proposed. By reasonably selecting model parameters, accurate prediction of microchannel depth is achieved with the corresponding average relative prediction error of 5.174%. Based on the proposed method, an effective parameter optimization strategy for achieving microchannels of specific sizes is developed. This method provides a new scheme for size prediction and controllable fabrication of silica glass microchannels with a femtosecond laser. Moreover, the proposed approach significantly reduces the time and cost of trial and error during actual processing and product development.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-022-01950-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2562-4077</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5515 |
ispartof | Journal of intelligent manufacturing, 2023-10, Vol.34 (7), p.2907-2924 |
issn | 0956-5515 1572-8145 |
language | eng |
recordid | cdi_proquest_journals_2843479621 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ablation Advanced manufacturing technologies Algorithms Back propagation networks Brittle materials Business and Management Control Controllability Fabrication Laser processing Lasers Machine learning Machines Manufacturing Mathematical models Mechatronics Microchannels Micromachining Modelling Neural networks Optimization Process parameters Processes Product development Production Robotics Silica Silica glass Ultrafast lasers |
title | Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20regulation%20of%20tapered%20microchannels%20in%20silica%20glass%20ablated%20by%20femtosecond%20laser%20with%20theoretical%20modeling%20and%20machine%20learning&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Liao,%20Kai&rft.date=2023-10-01&rft.volume=34&rft.issue=7&rft.spage=2907&rft.epage=2924&rft.pages=2907-2924&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-022-01950-z&rft_dat=%3Cproquest_cross%3E2843479621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843479621&rft_id=info:pmid/&rfr_iscdi=true |