Monte Carlo averaging for uncertainty estimation in neural networks

Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-05, Vol.2506 (1), p.12004
Hauptverfasser: Tassi, Cedrique Rovile Njieutcheu, Börner, Anko, Triebel, Rudolph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12004
container_title Journal of physics. Conference series
container_volume 2506
creator Tassi, Cedrique Rovile Njieutcheu
Börner, Anko
Triebel, Rudolph
description Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.
doi_str_mv 10.1088/1742-6596/2506/1/012004
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2843443219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843443219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tU0epXhlRUF9DjFNlq5rUpNW2X9vSmVFEJyXGZhzzgwfAMcYnWHEeY4rRrKyEGVOClTmOEeYIMR2wGy72d3OnO-DgxhXCNFU1QzUd971BtYqrD1UHyaoZeuW0PoAB6dN6FXr-g00sW_fVN96B1sHnRmCWqfWf_rwGg_BnlXraI6--xw8X1481dfZ4v7qpj5fZJoSzjL7QkuDBRONYkXRsAoJQwhHmjDbcCE0oQ1TRhMhRJKVnCnEEBKFarS2RtM5OJlyu-Dfh_SSXPkhuHRSpnzKGCVYJFU1qXTwMQZjZRfS72EjMZIjMTmykCMXORKTWE7EkpNOztZ3P9H_u07_cN0-1I-_hbJrLP0CH7R6aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843443219</pqid></control><display><type>article</type><title>Monte Carlo averaging for uncertainty estimation in neural networks</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tassi, Cedrique Rovile Njieutcheu ; Börner, Anko ; Triebel, Rudolph</creator><creatorcontrib>Tassi, Cedrique Rovile Njieutcheu ; Börner, Anko ; Triebel, Rudolph</creatorcontrib><description>Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2506/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; confidence calibration ; Convolutional neural network (CNN) ; ensemble ; mixture of Monte Carlo dropout (MMCD) ; Monte Carlo averaging (MCA) ; Monte Carlo dropout (MCD) ; Neural networks ; Physics ; separating true predictions (TPs) and false predictions (FPs) ; Uncertainty</subject><ispartof>Journal of physics. Conference series, 2023-05, Vol.2506 (1), p.12004</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</citedby><cites>FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2506/1/012004/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Tassi, Cedrique Rovile Njieutcheu</creatorcontrib><creatorcontrib>Börner, Anko</creatorcontrib><creatorcontrib>Triebel, Rudolph</creatorcontrib><title>Monte Carlo averaging for uncertainty estimation in neural networks</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.</description><subject>Artificial neural networks</subject><subject>confidence calibration</subject><subject>Convolutional neural network (CNN)</subject><subject>ensemble</subject><subject>mixture of Monte Carlo dropout (MMCD)</subject><subject>Monte Carlo averaging (MCA)</subject><subject>Monte Carlo dropout (MCD)</subject><subject>Neural networks</subject><subject>Physics</subject><subject>separating true predictions (TPs) and false predictions (FPs)</subject><subject>Uncertainty</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tU0epXhlRUF9DjFNlq5rUpNW2X9vSmVFEJyXGZhzzgwfAMcYnWHEeY4rRrKyEGVOClTmOEeYIMR2wGy72d3OnO-DgxhXCNFU1QzUd971BtYqrD1UHyaoZeuW0PoAB6dN6FXr-g00sW_fVN96B1sHnRmCWqfWf_rwGg_BnlXraI6--xw8X1481dfZ4v7qpj5fZJoSzjL7QkuDBRONYkXRsAoJQwhHmjDbcCE0oQ1TRhMhRJKVnCnEEBKFarS2RtM5OJlyu-Dfh_SSXPkhuHRSpnzKGCVYJFU1qXTwMQZjZRfS72EjMZIjMTmykCMXORKTWE7EkpNOztZ3P9H_u07_cN0-1I-_hbJrLP0CH7R6aw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tassi, Cedrique Rovile Njieutcheu</creator><creator>Börner, Anko</creator><creator>Triebel, Rudolph</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230501</creationdate><title>Monte Carlo averaging for uncertainty estimation in neural networks</title><author>Tassi, Cedrique Rovile Njieutcheu ; Börner, Anko ; Triebel, Rudolph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>confidence calibration</topic><topic>Convolutional neural network (CNN)</topic><topic>ensemble</topic><topic>mixture of Monte Carlo dropout (MMCD)</topic><topic>Monte Carlo averaging (MCA)</topic><topic>Monte Carlo dropout (MCD)</topic><topic>Neural networks</topic><topic>Physics</topic><topic>separating true predictions (TPs) and false predictions (FPs)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tassi, Cedrique Rovile Njieutcheu</creatorcontrib><creatorcontrib>Börner, Anko</creatorcontrib><creatorcontrib>Triebel, Rudolph</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tassi, Cedrique Rovile Njieutcheu</au><au>Börner, Anko</au><au>Triebel, Rudolph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo averaging for uncertainty estimation in neural networks</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>2506</volume><issue>1</issue><spage>12004</spage><pages>12004-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2506/1/012004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2023-05, Vol.2506 (1), p.12004
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2843443219
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Artificial neural networks
confidence calibration
Convolutional neural network (CNN)
ensemble
mixture of Monte Carlo dropout (MMCD)
Monte Carlo averaging (MCA)
Monte Carlo dropout (MCD)
Neural networks
Physics
separating true predictions (TPs) and false predictions (FPs)
Uncertainty
title Monte Carlo averaging for uncertainty estimation in neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20averaging%20for%20uncertainty%20estimation%20in%20neural%20networks&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tassi,%20Cedrique%20Rovile%20Njieutcheu&rft.date=2023-05-01&rft.volume=2506&rft.issue=1&rft.spage=12004&rft.pages=12004-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2506/1/012004&rft_dat=%3Cproquest_iop_j%3E2843443219%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843443219&rft_id=info:pmid/&rfr_iscdi=true