Monte Carlo averaging for uncertainty estimation in neural networks
Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of C...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2023-05, Vol.2506 (1), p.12004 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12004 |
container_title | Journal of physics. Conference series |
container_volume | 2506 |
creator | Tassi, Cedrique Rovile Njieutcheu Börner, Anko Triebel, Rudolph |
description | Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD. |
doi_str_mv | 10.1088/1742-6596/2506/1/012004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2843443219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843443219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tU0epXhlRUF9DjFNlq5rUpNW2X9vSmVFEJyXGZhzzgwfAMcYnWHEeY4rRrKyEGVOClTmOEeYIMR2wGy72d3OnO-DgxhXCNFU1QzUd971BtYqrD1UHyaoZeuW0PoAB6dN6FXr-g00sW_fVN96B1sHnRmCWqfWf_rwGg_BnlXraI6--xw8X1481dfZ4v7qpj5fZJoSzjL7QkuDBRONYkXRsAoJQwhHmjDbcCE0oQ1TRhMhRJKVnCnEEBKFarS2RtM5OJlyu-Dfh_SSXPkhuHRSpnzKGCVYJFU1qXTwMQZjZRfS72EjMZIjMTmykCMXORKTWE7EkpNOztZ3P9H_u07_cN0-1I-_hbJrLP0CH7R6aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843443219</pqid></control><display><type>article</type><title>Monte Carlo averaging for uncertainty estimation in neural networks</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tassi, Cedrique Rovile Njieutcheu ; Börner, Anko ; Triebel, Rudolph</creator><creatorcontrib>Tassi, Cedrique Rovile Njieutcheu ; Börner, Anko ; Triebel, Rudolph</creatorcontrib><description>Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2506/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; confidence calibration ; Convolutional neural network (CNN) ; ensemble ; mixture of Monte Carlo dropout (MMCD) ; Monte Carlo averaging (MCA) ; Monte Carlo dropout (MCD) ; Neural networks ; Physics ; separating true predictions (TPs) and false predictions (FPs) ; Uncertainty</subject><ispartof>Journal of physics. Conference series, 2023-05, Vol.2506 (1), p.12004</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</citedby><cites>FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2506/1/012004/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Tassi, Cedrique Rovile Njieutcheu</creatorcontrib><creatorcontrib>Börner, Anko</creatorcontrib><creatorcontrib>Triebel, Rudolph</creatorcontrib><title>Monte Carlo averaging for uncertainty estimation in neural networks</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.</description><subject>Artificial neural networks</subject><subject>confidence calibration</subject><subject>Convolutional neural network (CNN)</subject><subject>ensemble</subject><subject>mixture of Monte Carlo dropout (MMCD)</subject><subject>Monte Carlo averaging (MCA)</subject><subject>Monte Carlo dropout (MCD)</subject><subject>Neural networks</subject><subject>Physics</subject><subject>separating true predictions (TPs) and false predictions (FPs)</subject><subject>Uncertainty</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkFtLxDAQhYMouK7-BgO-CbW5tU0epXhlRUF9DjFNlq5rUpNW2X9vSmVFEJyXGZhzzgwfAMcYnWHEeY4rRrKyEGVOClTmOEeYIMR2wGy72d3OnO-DgxhXCNFU1QzUd971BtYqrD1UHyaoZeuW0PoAB6dN6FXr-g00sW_fVN96B1sHnRmCWqfWf_rwGg_BnlXraI6--xw8X1481dfZ4v7qpj5fZJoSzjL7QkuDBRONYkXRsAoJQwhHmjDbcCE0oQ1TRhMhRJKVnCnEEBKFarS2RtM5OJlyu-Dfh_SSXPkhuHRSpnzKGCVYJFU1qXTwMQZjZRfS72EjMZIjMTmykCMXORKTWE7EkpNOztZ3P9H_u07_cN0-1I-_hbJrLP0CH7R6aw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Tassi, Cedrique Rovile Njieutcheu</creator><creator>Börner, Anko</creator><creator>Triebel, Rudolph</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230501</creationdate><title>Monte Carlo averaging for uncertainty estimation in neural networks</title><author>Tassi, Cedrique Rovile Njieutcheu ; Börner, Anko ; Triebel, Rudolph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-fb36e1949da455d4709e2280c24fd899c23d4aec2999194684a040095adccfec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>confidence calibration</topic><topic>Convolutional neural network (CNN)</topic><topic>ensemble</topic><topic>mixture of Monte Carlo dropout (MMCD)</topic><topic>Monte Carlo averaging (MCA)</topic><topic>Monte Carlo dropout (MCD)</topic><topic>Neural networks</topic><topic>Physics</topic><topic>separating true predictions (TPs) and false predictions (FPs)</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tassi, Cedrique Rovile Njieutcheu</creatorcontrib><creatorcontrib>Börner, Anko</creatorcontrib><creatorcontrib>Triebel, Rudolph</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tassi, Cedrique Rovile Njieutcheu</au><au>Börner, Anko</au><au>Triebel, Rudolph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo averaging for uncertainty estimation in neural networks</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>2506</volume><issue>1</issue><spage>12004</spage><pages>12004-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Although convolutional neural networks (CNNs) are widely used in modern classifiers, they are affected by overfitting and lack robustness leading to overconfident false predictions (FPs). By preventing FPs, certain consequences (such as accidents and financial losses) can be avoided and the use of CNNs in safety- and/or mission-critical applications would be effective. In this work, we aim to improve the separability of true predictions (TPs) and FPs by enforcing the confidence determining uncertainty to be high for TPs and low for FPs. To achieve this, we must devise a suitable method. We proposed the use of Monte Carlo averaging (MCA) and thus compare it with related methods, such as baseline (single CNN), Monte Carlo dropout (MCD), ensemble, and mixture of Monte Carlo dropout (MMCD). This comparison is performed using the results of experiments conducted on four datasets with three different architectures. The results show that MCA performs as well as or even better than MMCD, which in turn performs better than baseline, ensemble, and MCD. Consequently, MCA could be used instead of MMCD for uncertainty estimation, especially because it does not require a predefined distribution and it is less expensive than MMCD.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2506/1/012004</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2023-05, Vol.2506 (1), p.12004 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2843443219 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks confidence calibration Convolutional neural network (CNN) ensemble mixture of Monte Carlo dropout (MMCD) Monte Carlo averaging (MCA) Monte Carlo dropout (MCD) Neural networks Physics separating true predictions (TPs) and false predictions (FPs) Uncertainty |
title | Monte Carlo averaging for uncertainty estimation in neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20averaging%20for%20uncertainty%20estimation%20in%20neural%20networks&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Tassi,%20Cedrique%20Rovile%20Njieutcheu&rft.date=2023-05-01&rft.volume=2506&rft.issue=1&rft.spage=12004&rft.pages=12004-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2506/1/012004&rft_dat=%3Cproquest_iop_j%3E2843443219%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843443219&rft_id=info:pmid/&rfr_iscdi=true |