Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites
Ni 0.8 Cu 0.1 Zn 0.1 Mo x Fe 2–2 x O 4 ( x ≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2023-08, Vol.129 (8), Article 582 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 129 |
creator | Caliskan, S. Almessiere, M. A. Baykal, A. Slimani, Y. Korkmaz, A. Demir Gungunes, H. Auwal, I. A. |
description | Ni
0.8
Cu
0.1
Zn
0.1
Mo
x
Fe
2–2
x
O
4
(
x
≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo
4+
were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe
3+
sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization (
M
s
), magnetic moment (
n
B
), coercivity (
H
c
), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at
x
= 0.06, fluctuate with respect to Mo concentration at each temperature. The
M
s
and
n
B
become the maximum for the Mo → NiCuZn NSFs (
x
= 0.02) which yields the minimum
H
c
. The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field. |
doi_str_mv | 10.1007/s00339-023-06867-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2843426181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843426181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EEuF4ASpLNCBlw_jIHiWKuCSOAmhorJV3HDZKvMH2SqGjJKLjGXiyPAmGRdDhYjwj__9v-yNkj8GAAWRHHkCIIgEuEkjzNEuKNdJjUvA4ClgnPShkluSiSDfJlvcTiEty3iNvt8G1OrSunPbprBxbDLWmc9fM0YUafZ-WtqKPz3E0tUVa24Cu1KFurKeNodc1DPJRG5_xYGO5ahanyFev73xxI-kBDGD1slwtP2Jd_HZRd0htaRs_j5FTatC5OqDfIRumnHrc_dm3yf3pyd3oPLm8ObsYHV8mWrAiJEyg1rnGYckrxmQmUoFDg5JBAZpnmqcVL9AIDUMpwUAueBoPdWUMpFXktE32u9z4zacWfVCTpnU2Xql4LoXkKctZVPFOpV3jvUOj5q6ele5ZMVBf0FUHXUXo6hu6KqJJdCYfxXaM7i_6H9cnwYWJfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843426181</pqid></control><display><type>article</type><title>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</title><source>Springer Nature - Complete Springer Journals</source><creator>Caliskan, S. ; Almessiere, M. A. ; Baykal, A. ; Slimani, Y. ; Korkmaz, A. Demir ; Gungunes, H. ; Auwal, I. A.</creator><creatorcontrib>Caliskan, S. ; Almessiere, M. A. ; Baykal, A. ; Slimani, Y. ; Korkmaz, A. Demir ; Gungunes, H. ; Auwal, I. A.</creatorcontrib><description>Ni
0.8
Cu
0.1
Zn
0.1
Mo
x
Fe
2–2
x
O
4
(
x
≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo
4+
were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe
3+
sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization (
M
s
), magnetic moment (
n
B
), coercivity (
H
c
), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at
x
= 0.06, fluctuate with respect to Mo concentration at each temperature. The
M
s
and
n
B
become the maximum for the Mo → NiCuZn NSFs (
x
= 0.02) which yields the minimum
H
c
. The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06867-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Applied physics ; Characterization and Evaluation of Materials ; Chemical composition ; Coercivity ; Condensed Matter Physics ; Diffraction patterns ; Ferrites ; Hysteresis loops ; Machines ; Magnetic domains ; Magnetic moments ; Magnetic properties ; Magnetic saturation ; Manufacturing ; Materials science ; Mossbauer spectroscopy ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Parameters ; Physics ; Physics and Astronomy ; Processes ; Sol-gel processes ; Spectra ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2023-08, Vol.129 (8), Article 582</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</citedby><cites>FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</cites><orcidid>0000-0002-2579-1617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-023-06867-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-023-06867-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Caliskan, S.</creatorcontrib><creatorcontrib>Almessiere, M. A.</creatorcontrib><creatorcontrib>Baykal, A.</creatorcontrib><creatorcontrib>Slimani, Y.</creatorcontrib><creatorcontrib>Korkmaz, A. Demir</creatorcontrib><creatorcontrib>Gungunes, H.</creatorcontrib><creatorcontrib>Auwal, I. A.</creatorcontrib><title>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Ni
0.8
Cu
0.1
Zn
0.1
Mo
x
Fe
2–2
x
O
4
(
x
≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo
4+
were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe
3+
sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization (
M
s
), magnetic moment (
n
B
), coercivity (
H
c
), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at
x
= 0.06, fluctuate with respect to Mo concentration at each temperature. The
M
s
and
n
B
become the maximum for the Mo → NiCuZn NSFs (
x
= 0.02) which yields the minimum
H
c
. The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Coercivity</subject><subject>Condensed Matter Physics</subject><subject>Diffraction patterns</subject><subject>Ferrites</subject><subject>Hysteresis loops</subject><subject>Machines</subject><subject>Magnetic domains</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mossbauer spectroscopy</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sol-gel processes</subject><subject>Spectra</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOAzEQhi0EEuF4ASpLNCBlw_jIHiWKuCSOAmhorJV3HDZKvMH2SqGjJKLjGXiyPAmGRdDhYjwj__9v-yNkj8GAAWRHHkCIIgEuEkjzNEuKNdJjUvA4ClgnPShkluSiSDfJlvcTiEty3iNvt8G1OrSunPbprBxbDLWmc9fM0YUafZ-WtqKPz3E0tUVa24Cu1KFurKeNodc1DPJRG5_xYGO5ahanyFev73xxI-kBDGD1slwtP2Jd_HZRd0htaRs_j5FTatC5OqDfIRumnHrc_dm3yf3pyd3oPLm8ObsYHV8mWrAiJEyg1rnGYckrxmQmUoFDg5JBAZpnmqcVL9AIDUMpwUAueBoPdWUMpFXktE32u9z4zacWfVCTpnU2Xql4LoXkKctZVPFOpV3jvUOj5q6ele5ZMVBf0FUHXUXo6hu6KqJJdCYfxXaM7i_6H9cnwYWJfg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Caliskan, S.</creator><creator>Almessiere, M. A.</creator><creator>Baykal, A.</creator><creator>Slimani, Y.</creator><creator>Korkmaz, A. Demir</creator><creator>Gungunes, H.</creator><creator>Auwal, I. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2579-1617</orcidid></search><sort><creationdate>20230801</creationdate><title>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</title><author>Caliskan, S. ; Almessiere, M. A. ; Baykal, A. ; Slimani, Y. ; Korkmaz, A. Demir ; Gungunes, H. ; Auwal, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Coercivity</topic><topic>Condensed Matter Physics</topic><topic>Diffraction patterns</topic><topic>Ferrites</topic><topic>Hysteresis loops</topic><topic>Machines</topic><topic>Magnetic domains</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mossbauer spectroscopy</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sol-gel processes</topic><topic>Spectra</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliskan, S.</creatorcontrib><creatorcontrib>Almessiere, M. A.</creatorcontrib><creatorcontrib>Baykal, A.</creatorcontrib><creatorcontrib>Slimani, Y.</creatorcontrib><creatorcontrib>Korkmaz, A. Demir</creatorcontrib><creatorcontrib>Gungunes, H.</creatorcontrib><creatorcontrib>Auwal, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliskan, S.</au><au>Almessiere, M. A.</au><au>Baykal, A.</au><au>Slimani, Y.</au><au>Korkmaz, A. Demir</au><au>Gungunes, H.</au><au>Auwal, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>129</volume><issue>8</issue><artnum>582</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Ni
0.8
Cu
0.1
Zn
0.1
Mo
x
Fe
2–2
x
O
4
(
x
≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo
4+
were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe
3+
sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization (
M
s
), magnetic moment (
n
B
), coercivity (
H
c
), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at
x
= 0.06, fluctuate with respect to Mo concentration at each temperature. The
M
s
and
n
B
become the maximum for the Mo → NiCuZn NSFs (
x
= 0.02) which yields the minimum
H
c
. The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06867-9</doi><orcidid>https://orcid.org/0000-0002-2579-1617</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2023-08, Vol.129 (8), Article 582 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2843426181 |
source | Springer Nature - Complete Springer Journals |
subjects | Anisotropy Applied physics Characterization and Evaluation of Materials Chemical composition Coercivity Condensed Matter Physics Diffraction patterns Ferrites Hysteresis loops Machines Magnetic domains Magnetic moments Magnetic properties Magnetic saturation Manufacturing Materials science Mossbauer spectroscopy Nanoparticles Nanotechnology Optical and Electronic Materials Parameters Physics Physics and Astronomy Processes Sol-gel processes Spectra Surfaces and Interfaces Thin Films |
title | Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20magnetic%20properties,%20and%20hyperfine%20interactions%20of%20Ni0.8Cu0.1Zn0.1MoxFe2%E2%88%922xO4%20(0.0%E2%80%89%E2%89%A4%E2%80%89x%E2%80%89%E2%89%A4%E2%80%890.1)%20nanospinel%20ferrites&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Caliskan,%20S.&rft.date=2023-08-01&rft.volume=129&rft.issue=8&rft.artnum=582&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06867-9&rft_dat=%3Cproquest_cross%3E2843426181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843426181&rft_id=info:pmid/&rfr_iscdi=true |