Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites

Ni 0.8 Cu 0.1 Zn 0.1 Mo x Fe 2–2 x O 4 ( x  ≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2023-08, Vol.129 (8), Article 582
Hauptverfasser: Caliskan, S., Almessiere, M. A., Baykal, A., Slimani, Y., Korkmaz, A. Demir, Gungunes, H., Auwal, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 129
creator Caliskan, S.
Almessiere, M. A.
Baykal, A.
Slimani, Y.
Korkmaz, A. Demir
Gungunes, H.
Auwal, I. A.
description Ni 0.8 Cu 0.1 Zn 0.1 Mo x Fe 2–2 x O 4 ( x  ≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo 4+ were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe 3+ sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization ( M s ), magnetic moment ( n B ), coercivity ( H c ), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at x  = 0.06, fluctuate with respect to Mo concentration at each temperature. The M s and n B become the maximum for the Mo → NiCuZn NSFs ( x  = 0.02) which yields the minimum H c . The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.
doi_str_mv 10.1007/s00339-023-06867-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2843426181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843426181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</originalsourceid><addsrcrecordid>eNp9kLlOAzEQhi0EEuF4ASpLNCBlw_jIHiWKuCSOAmhorJV3HDZKvMH2SqGjJKLjGXiyPAmGRdDhYjwj__9v-yNkj8GAAWRHHkCIIgEuEkjzNEuKNdJjUvA4ClgnPShkluSiSDfJlvcTiEty3iNvt8G1OrSunPbprBxbDLWmc9fM0YUafZ-WtqKPz3E0tUVa24Cu1KFurKeNodc1DPJRG5_xYGO5ahanyFev73xxI-kBDGD1slwtP2Jd_HZRd0htaRs_j5FTatC5OqDfIRumnHrc_dm3yf3pyd3oPLm8ObsYHV8mWrAiJEyg1rnGYckrxmQmUoFDg5JBAZpnmqcVL9AIDUMpwUAueBoPdWUMpFXktE32u9z4zacWfVCTpnU2Xql4LoXkKctZVPFOpV3jvUOj5q6ele5ZMVBf0FUHXUXo6hu6KqJJdCYfxXaM7i_6H9cnwYWJfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843426181</pqid></control><display><type>article</type><title>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</title><source>Springer Nature - Complete Springer Journals</source><creator>Caliskan, S. ; Almessiere, M. A. ; Baykal, A. ; Slimani, Y. ; Korkmaz, A. Demir ; Gungunes, H. ; Auwal, I. A.</creator><creatorcontrib>Caliskan, S. ; Almessiere, M. A. ; Baykal, A. ; Slimani, Y. ; Korkmaz, A. Demir ; Gungunes, H. ; Auwal, I. A.</creatorcontrib><description>Ni 0.8 Cu 0.1 Zn 0.1 Mo x Fe 2–2 x O 4 ( x  ≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo 4+ were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe 3+ sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization ( M s ), magnetic moment ( n B ), coercivity ( H c ), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at x  = 0.06, fluctuate with respect to Mo concentration at each temperature. The M s and n B become the maximum for the Mo → NiCuZn NSFs ( x  = 0.02) which yields the minimum H c . The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06867-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anisotropy ; Applied physics ; Characterization and Evaluation of Materials ; Chemical composition ; Coercivity ; Condensed Matter Physics ; Diffraction patterns ; Ferrites ; Hysteresis loops ; Machines ; Magnetic domains ; Magnetic moments ; Magnetic properties ; Magnetic saturation ; Manufacturing ; Materials science ; Mossbauer spectroscopy ; Nanoparticles ; Nanotechnology ; Optical and Electronic Materials ; Parameters ; Physics ; Physics and Astronomy ; Processes ; Sol-gel processes ; Spectra ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2023-08, Vol.129 (8), Article 582</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</citedby><cites>FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</cites><orcidid>0000-0002-2579-1617</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-023-06867-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-023-06867-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Caliskan, S.</creatorcontrib><creatorcontrib>Almessiere, M. A.</creatorcontrib><creatorcontrib>Baykal, A.</creatorcontrib><creatorcontrib>Slimani, Y.</creatorcontrib><creatorcontrib>Korkmaz, A. Demir</creatorcontrib><creatorcontrib>Gungunes, H.</creatorcontrib><creatorcontrib>Auwal, I. A.</creatorcontrib><title>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Ni 0.8 Cu 0.1 Zn 0.1 Mo x Fe 2–2 x O 4 ( x  ≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo 4+ were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe 3+ sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization ( M s ), magnetic moment ( n B ), coercivity ( H c ), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at x  = 0.06, fluctuate with respect to Mo concentration at each temperature. The M s and n B become the maximum for the Mo → NiCuZn NSFs ( x  = 0.02) which yields the minimum H c . The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.</description><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical composition</subject><subject>Coercivity</subject><subject>Condensed Matter Physics</subject><subject>Diffraction patterns</subject><subject>Ferrites</subject><subject>Hysteresis loops</subject><subject>Machines</subject><subject>Magnetic domains</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mossbauer spectroscopy</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sol-gel processes</subject><subject>Spectra</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLlOAzEQhi0EEuF4ASpLNCBlw_jIHiWKuCSOAmhorJV3HDZKvMH2SqGjJKLjGXiyPAmGRdDhYjwj__9v-yNkj8GAAWRHHkCIIgEuEkjzNEuKNdJjUvA4ClgnPShkluSiSDfJlvcTiEty3iNvt8G1OrSunPbprBxbDLWmc9fM0YUafZ-WtqKPz3E0tUVa24Cu1KFurKeNodc1DPJRG5_xYGO5ahanyFev73xxI-kBDGD1slwtP2Jd_HZRd0htaRs_j5FTatC5OqDfIRumnHrc_dm3yf3pyd3oPLm8ObsYHV8mWrAiJEyg1rnGYckrxmQmUoFDg5JBAZpnmqcVL9AIDUMpwUAueBoPdWUMpFXktE32u9z4zacWfVCTpnU2Xql4LoXkKctZVPFOpV3jvUOj5q6ele5ZMVBf0FUHXUXo6hu6KqJJdCYfxXaM7i_6H9cnwYWJfg</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Caliskan, S.</creator><creator>Almessiere, M. A.</creator><creator>Baykal, A.</creator><creator>Slimani, Y.</creator><creator>Korkmaz, A. Demir</creator><creator>Gungunes, H.</creator><creator>Auwal, I. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2579-1617</orcidid></search><sort><creationdate>20230801</creationdate><title>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</title><author>Caliskan, S. ; Almessiere, M. A. ; Baykal, A. ; Slimani, Y. ; Korkmaz, A. Demir ; Gungunes, H. ; Auwal, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-13ecc8ce5a2d1147363e5fe41090c27c26d29ef3c05440f08326410cdff06d033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical composition</topic><topic>Coercivity</topic><topic>Condensed Matter Physics</topic><topic>Diffraction patterns</topic><topic>Ferrites</topic><topic>Hysteresis loops</topic><topic>Machines</topic><topic>Magnetic domains</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mossbauer spectroscopy</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sol-gel processes</topic><topic>Spectra</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caliskan, S.</creatorcontrib><creatorcontrib>Almessiere, M. A.</creatorcontrib><creatorcontrib>Baykal, A.</creatorcontrib><creatorcontrib>Slimani, Y.</creatorcontrib><creatorcontrib>Korkmaz, A. Demir</creatorcontrib><creatorcontrib>Gungunes, H.</creatorcontrib><creatorcontrib>Auwal, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caliskan, S.</au><au>Almessiere, M. A.</au><au>Baykal, A.</au><au>Slimani, Y.</au><au>Korkmaz, A. Demir</au><au>Gungunes, H.</au><au>Auwal, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>129</volume><issue>8</issue><artnum>582</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Ni 0.8 Cu 0.1 Zn 0.1 Mo x Fe 2–2 x O 4 ( x  ≤ 0.1) nanospinel ferrites (Mo → NiCuZn NSFs) were produced by sol–gel approach. A spinel structure formation with no impurities was confirmed by X-ray diffraction (XRD) patterns. The nanoparticles’ morphology and chemical composition of the products have been confirmed via SEM, TEM, HR-TEM, and EDX. By fitting Mössbauer spectra at RT, Hyperfine parameters were determined. A superparamagnetic state was observed in all samples. The Mo 4+ were found to reside in the B site mainly. Isomer shift values showed that Mössbauer spectra composed magnetic Fe 3+ sextets. Magnetic characteristics of Mo → NiCuZn NSFs are probed employing hysteresis loops at 300 K and 10 K. The significant role of Mo ions in the magnetic characteristics of the host material is revealed by employing saturation magnetization ( M s ), magnetic moment ( n B ), coercivity ( H c ), SQR (squareness ratio), and magneto-crystalline anisotropy constant. While the samples show a superparamagnetic behavior at 300 K, they represent a magnetically soft material at 10 K. The magnetic parameters, with a minimum magnetization at x  = 0.06, fluctuate with respect to Mo concentration at each temperature. The M s and n B become the maximum for the Mo → NiCuZn NSFs ( x  = 0.02) which yields the minimum H c . The SQR is negligible at 300 K and low (much less than 0.5) at 10 K, reflecting the generation of multi-magnetic domains and a relatively low anisotropy field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06867-9</doi><orcidid>https://orcid.org/0000-0002-2579-1617</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2023-08, Vol.129 (8), Article 582
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2843426181
source Springer Nature - Complete Springer Journals
subjects Anisotropy
Applied physics
Characterization and Evaluation of Materials
Chemical composition
Coercivity
Condensed Matter Physics
Diffraction patterns
Ferrites
Hysteresis loops
Machines
Magnetic domains
Magnetic moments
Magnetic properties
Magnetic saturation
Manufacturing
Materials science
Mossbauer spectroscopy
Nanoparticles
Nanotechnology
Optical and Electronic Materials
Parameters
Physics
Physics and Astronomy
Processes
Sol-gel processes
Spectra
Surfaces and Interfaces
Thin Films
title Structural, magnetic properties, and hyperfine interactions of Ni0.8Cu0.1Zn0.1MoxFe2−2xO4 (0.0 ≤ x ≤ 0.1) nanospinel ferrites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural,%20magnetic%20properties,%20and%20hyperfine%20interactions%20of%20Ni0.8Cu0.1Zn0.1MoxFe2%E2%88%922xO4%20(0.0%E2%80%89%E2%89%A4%E2%80%89x%E2%80%89%E2%89%A4%E2%80%890.1)%20nanospinel%20ferrites&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Caliskan,%20S.&rft.date=2023-08-01&rft.volume=129&rft.issue=8&rft.artnum=582&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06867-9&rft_dat=%3Cproquest_cross%3E2843426181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843426181&rft_id=info:pmid/&rfr_iscdi=true