Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span
This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool lever...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman |
description | This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2843250717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843250717</sourcerecordid><originalsourceid>FETCH-proquest_journals_28432507173</originalsourceid><addsrcrecordid>eNqNykEKwjAQheEgCIp6hwG3CjWx1m2xiu7EupfYTmskZGoyRb29FTyAqwf_-3piKJVazNdLKQdiEsI9iiK5SmQcq6GgvEEs4YS6NK6GM5GFIz3Rd_H6htSzqUxhtIWDY7TW1OgKhIo85NyW6DjA0_AN0myfzSB7B4svo2fwBTfyDClzpww5yBvtxqJfaRtw8tuRmO62581-3nh6tBj4cqfWu-66yPVSyThKFon6T30A0dtJKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843250717</pqid></control><display><type>article</type><title>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</title><source>Free E- Journals</source><creator>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creator><creatorcontrib>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creatorcontrib><description>This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Attention ; Bionics ; Dyslexia ; Multilayer perceptrons ; Sentences ; Students ; Task complexity</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creatorcontrib><title>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</title><title>arXiv.org</title><description>This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Attention</subject><subject>Bionics</subject><subject>Dyslexia</subject><subject>Multilayer perceptrons</subject><subject>Sentences</subject><subject>Students</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQheEgCIp6hwG3CjWx1m2xiu7EupfYTmskZGoyRb29FTyAqwf_-3piKJVazNdLKQdiEsI9iiK5SmQcq6GgvEEs4YS6NK6GM5GFIz3Rd_H6htSzqUxhtIWDY7TW1OgKhIo85NyW6DjA0_AN0myfzSB7B4svo2fwBTfyDClzpww5yBvtxqJfaRtw8tuRmO62581-3nh6tBj4cqfWu-66yPVSyThKFon6T30A0dtJKQ</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230726</creationdate><title>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</title><author>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28432507173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Attention</topic><topic>Bionics</topic><topic>Dyslexia</topic><topic>Multilayer perceptrons</topic><topic>Sentences</topic><topic>Students</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</atitle><jtitle>arXiv.org</jtitle><date>2023-07-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2843250717 |
source | Free E- Journals |
subjects | Algorithms Artificial intelligence Attention Bionics Dyslexia Multilayer perceptrons Sentences Students Task complexity |
title | Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Speed%20Reading%20Tool%20Powered%20by%20Artificial%20Intelligence%20for%20Students%20with%20ADHD,%20Dyslexia,%20or%20Short%20Attention%20Span&rft.jtitle=arXiv.org&rft.au=Megat%20Irfan%20Zackry%20Bin%20Ismail%20Ahmad%20Nazran%20bin%20Yusri%20Muhammad%20Hafizzul%20Bin%20Abdul%20Manap%20Muhammad%20Muizzuddin%20Bin%20Kamarozaman&rft.date=2023-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2843250717%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843250717&rft_id=info:pmid/&rfr_iscdi=true |