Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span

This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool lever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
1. Verfasser: Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman
description This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2843250717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2843250717</sourcerecordid><originalsourceid>FETCH-proquest_journals_28432507173</originalsourceid><addsrcrecordid>eNqNykEKwjAQheEgCIp6hwG3CjWx1m2xiu7EupfYTmskZGoyRb29FTyAqwf_-3piKJVazNdLKQdiEsI9iiK5SmQcq6GgvEEs4YS6NK6GM5GFIz3Rd_H6htSzqUxhtIWDY7TW1OgKhIo85NyW6DjA0_AN0myfzSB7B4svo2fwBTfyDClzpww5yBvtxqJfaRtw8tuRmO62581-3nh6tBj4cqfWu-66yPVSyThKFon6T30A0dtJKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843250717</pqid></control><display><type>article</type><title>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</title><source>Free E- Journals</source><creator>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creator><creatorcontrib>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creatorcontrib><description>This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Attention ; Bionics ; Dyslexia ; Multilayer perceptrons ; Sentences ; Students ; Task complexity</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creatorcontrib><title>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</title><title>arXiv.org</title><description>This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Attention</subject><subject>Bionics</subject><subject>Dyslexia</subject><subject>Multilayer perceptrons</subject><subject>Sentences</subject><subject>Students</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQheEgCIp6hwG3CjWx1m2xiu7EupfYTmskZGoyRb29FTyAqwf_-3piKJVazNdLKQdiEsI9iiK5SmQcq6GgvEEs4YS6NK6GM5GFIz3Rd_H6htSzqUxhtIWDY7TW1OgKhIo85NyW6DjA0_AN0myfzSB7B4svo2fwBTfyDClzpww5yBvtxqJfaRtw8tuRmO62581-3nh6tBj4cqfWu-66yPVSyThKFon6T30A0dtJKQ</recordid><startdate>20230726</startdate><enddate>20230726</enddate><creator>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230726</creationdate><title>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</title><author>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28432507173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Attention</topic><topic>Bionics</topic><topic>Dyslexia</topic><topic>Multilayer perceptrons</topic><topic>Sentences</topic><topic>Students</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Megat Irfan Zackry Bin Ismail Ahmad Nazran bin Yusri Muhammad Hafizzul Bin Abdul Manap Muhammad Muizzuddin Bin Kamarozaman</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span</atitle><jtitle>arXiv.org</jtitle><date>2023-07-26</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2843250717
source Free E- Journals
subjects Algorithms
Artificial intelligence
Attention
Bionics
Dyslexia
Multilayer perceptrons
Sentences
Students
Task complexity
title Speed Reading Tool Powered by Artificial Intelligence for Students with ADHD, Dyslexia, or Short Attention Span
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Speed%20Reading%20Tool%20Powered%20by%20Artificial%20Intelligence%20for%20Students%20with%20ADHD,%20Dyslexia,%20or%20Short%20Attention%20Span&rft.jtitle=arXiv.org&rft.au=Megat%20Irfan%20Zackry%20Bin%20Ismail%20Ahmad%20Nazran%20bin%20Yusri%20Muhammad%20Hafizzul%20Bin%20Abdul%20Manap%20Muhammad%20Muizzuddin%20Bin%20Kamarozaman&rft.date=2023-07-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2843250717%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843250717&rft_id=info:pmid/&rfr_iscdi=true