Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets
Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the a...
Gespeichert in:
Veröffentlicht in: | Processes 2023-07, Vol.11 (7), p.2019 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 2019 |
container_title | Processes |
container_volume | 11 |
creator | He, Song Liu, Heyun Zhang, Yuan Liu, Haili Chen, Wang |
description | Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems. |
doi_str_mv | 10.3390/pr11072019 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2843105647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759190611</galeid><sourcerecordid>A759190611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9226404b56e74b87d249797bd81090b8d1fc746c43b57201f9c2b6bc1b5b9e0f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLQXf0HAm7A1H7ubzbGUVgtVD-rFy5Jkkzalm6xJVvDfm1JBZw4zDM87wzsA3GA0o5Sj-yFgjBhBmJ-BCSGEFZxhdv6vvwTTGPcoB8e0qeoJ-Fi7Lx2T3YpkvYPewLTTcO2SDkYoDZfGaJUiFK6Dq-Az6bbwSaudcDb2R_5ZOD_44McI54ext07A153WKV6DCyMOUU9_6xV4Xy3fFo_F5uVhvZhvCkU4TQUnpC5RKatas1I2rCMlZ5zJrsGII9l02ChW1qqksjqaM1wRWUuFZSW5RoZegdvT3iH4zzGbafd-DC6fbElTUoyqumSZmp2orTjo1jrjUxAqZ6d7q7zTxub5nFUcc1RjnAV3J4HKtmPQph2C7UX4bjFqj_9u__5NfwA9F3FO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843105647</pqid></control><display><type>article</type><title>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>He, Song ; Liu, Heyun ; Zhang, Yuan ; Liu, Haili ; Chen, Wang</creator><creatorcontrib>He, Song ; Liu, Heyun ; Zhang, Yuan ; Liu, Haili ; Chen, Wang</creatorcontrib><description>Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11072019</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air conditioning ; Air temperature ; Alumina ; Aluminum ; Aluminum oxide ; Anodizing ; Comparative analysis ; Contact angle ; Diameters ; Energy consumption ; Equipment and supplies ; Fins ; Fractal geometry ; Fractals ; Frost ; Green buildings ; Heat ; Heat exchange ; Heat exchangers ; Heat pumps ; Heating ; Humidity ; Hydrophobic surfaces ; Investigations ; Low temperature ; Low temperature environments ; Metal sheets ; Morphology ; Nanoparticles ; Oxidation ; Relative humidity</subject><ispartof>Processes, 2023-07, Vol.11 (7), p.2019</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-9226404b56e74b87d249797bd81090b8d1fc746c43b57201f9c2b6bc1b5b9e0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Song</creatorcontrib><creatorcontrib>Liu, Heyun</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Liu, Haili</creatorcontrib><creatorcontrib>Chen, Wang</creatorcontrib><title>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</title><title>Processes</title><description>Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.</description><subject>Air conditioning</subject><subject>Air temperature</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Anodizing</subject><subject>Comparative analysis</subject><subject>Contact angle</subject><subject>Diameters</subject><subject>Energy consumption</subject><subject>Equipment and supplies</subject><subject>Fins</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Frost</subject><subject>Green buildings</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Heating</subject><subject>Humidity</subject><subject>Hydrophobic surfaces</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Low temperature environments</subject><subject>Metal sheets</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Relative humidity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1LAzEQhoMoWLQXf0HAm7A1H7ubzbGUVgtVD-rFy5Jkkzalm6xJVvDfm1JBZw4zDM87wzsA3GA0o5Sj-yFgjBhBmJ-BCSGEFZxhdv6vvwTTGPcoB8e0qeoJ-Fi7Lx2T3YpkvYPewLTTcO2SDkYoDZfGaJUiFK6Dq-Az6bbwSaudcDb2R_5ZOD_44McI54ext07A153WKV6DCyMOUU9_6xV4Xy3fFo_F5uVhvZhvCkU4TQUnpC5RKatas1I2rCMlZ5zJrsGII9l02ChW1qqksjqaM1wRWUuFZSW5RoZegdvT3iH4zzGbafd-DC6fbElTUoyqumSZmp2orTjo1jrjUxAqZ6d7q7zTxub5nFUcc1RjnAV3J4HKtmPQph2C7UX4bjFqj_9u__5NfwA9F3FO</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>He, Song</creator><creator>Liu, Heyun</creator><creator>Zhang, Yuan</creator><creator>Liu, Haili</creator><creator>Chen, Wang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230701</creationdate><title>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</title><author>He, Song ; Liu, Heyun ; Zhang, Yuan ; Liu, Haili ; Chen, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9226404b56e74b87d249797bd81090b8d1fc746c43b57201f9c2b6bc1b5b9e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air conditioning</topic><topic>Air temperature</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Anodizing</topic><topic>Comparative analysis</topic><topic>Contact angle</topic><topic>Diameters</topic><topic>Energy consumption</topic><topic>Equipment and supplies</topic><topic>Fins</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Frost</topic><topic>Green buildings</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Heating</topic><topic>Humidity</topic><topic>Hydrophobic surfaces</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Low temperature environments</topic><topic>Metal sheets</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Song</creatorcontrib><creatorcontrib>Liu, Heyun</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Liu, Haili</creatorcontrib><creatorcontrib>Chen, Wang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Song</au><au>Liu, Heyun</au><au>Zhang, Yuan</au><au>Liu, Haili</au><au>Chen, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</atitle><jtitle>Processes</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>7</issue><spage>2019</spage><pages>2019-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11072019</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-07, Vol.11 (7), p.2019 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2843105647 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Air conditioning Air temperature Alumina Aluminum Aluminum oxide Anodizing Comparative analysis Contact angle Diameters Energy consumption Equipment and supplies Fins Fractal geometry Fractals Frost Green buildings Heat Heat exchange Heat exchangers Heat pumps Heating Humidity Hydrophobic surfaces Investigations Low temperature Low temperature environments Metal sheets Morphology Nanoparticles Oxidation Relative humidity |
title | Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Interface%20Effects%20and%20Frosting%20Mechanism%20of%20Nanoporous%20Alumina%20Sheets&rft.jtitle=Processes&rft.au=He,%20Song&rft.date=2023-07-01&rft.volume=11&rft.issue=7&rft.spage=2019&rft.pages=2019-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11072019&rft_dat=%3Cgale_proqu%3EA759190611%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843105647&rft_id=info:pmid/&rft_galeid=A759190611&rfr_iscdi=true |