Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets

Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-07, Vol.11 (7), p.2019
Hauptverfasser: He, Song, Liu, Heyun, Zhang, Yuan, Liu, Haili, Chen, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 2019
container_title Processes
container_volume 11
creator He, Song
Liu, Heyun
Zhang, Yuan
Liu, Haili
Chen, Wang
description Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.
doi_str_mv 10.3390/pr11072019
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2843105647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759190611</galeid><sourcerecordid>A759190611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9226404b56e74b87d249797bd81090b8d1fc746c43b57201f9c2b6bc1b5b9e0f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLQXf0HAm7A1H7ubzbGUVgtVD-rFy5Jkkzalm6xJVvDfm1JBZw4zDM87wzsA3GA0o5Sj-yFgjBhBmJ-BCSGEFZxhdv6vvwTTGPcoB8e0qeoJ-Fi7Lx2T3YpkvYPewLTTcO2SDkYoDZfGaJUiFK6Dq-Az6bbwSaudcDb2R_5ZOD_44McI54ext07A153WKV6DCyMOUU9_6xV4Xy3fFo_F5uVhvZhvCkU4TQUnpC5RKatas1I2rCMlZ5zJrsGII9l02ChW1qqksjqaM1wRWUuFZSW5RoZegdvT3iH4zzGbafd-DC6fbElTUoyqumSZmp2orTjo1jrjUxAqZ6d7q7zTxub5nFUcc1RjnAV3J4HKtmPQph2C7UX4bjFqj_9u__5NfwA9F3FO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843105647</pqid></control><display><type>article</type><title>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>He, Song ; Liu, Heyun ; Zhang, Yuan ; Liu, Haili ; Chen, Wang</creator><creatorcontrib>He, Song ; Liu, Heyun ; Zhang, Yuan ; Liu, Haili ; Chen, Wang</creatorcontrib><description>Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11072019</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air conditioning ; Air temperature ; Alumina ; Aluminum ; Aluminum oxide ; Anodizing ; Comparative analysis ; Contact angle ; Diameters ; Energy consumption ; Equipment and supplies ; Fins ; Fractal geometry ; Fractals ; Frost ; Green buildings ; Heat ; Heat exchange ; Heat exchangers ; Heat pumps ; Heating ; Humidity ; Hydrophobic surfaces ; Investigations ; Low temperature ; Low temperature environments ; Metal sheets ; Morphology ; Nanoparticles ; Oxidation ; Relative humidity</subject><ispartof>Processes, 2023-07, Vol.11 (7), p.2019</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-9226404b56e74b87d249797bd81090b8d1fc746c43b57201f9c2b6bc1b5b9e0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Song</creatorcontrib><creatorcontrib>Liu, Heyun</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Liu, Haili</creatorcontrib><creatorcontrib>Chen, Wang</creatorcontrib><title>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</title><title>Processes</title><description>Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.</description><subject>Air conditioning</subject><subject>Air temperature</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Anodizing</subject><subject>Comparative analysis</subject><subject>Contact angle</subject><subject>Diameters</subject><subject>Energy consumption</subject><subject>Equipment and supplies</subject><subject>Fins</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Frost</subject><subject>Green buildings</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Heating</subject><subject>Humidity</subject><subject>Hydrophobic surfaces</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Low temperature environments</subject><subject>Metal sheets</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Relative humidity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1LAzEQhoMoWLQXf0HAm7A1H7ubzbGUVgtVD-rFy5Jkkzalm6xJVvDfm1JBZw4zDM87wzsA3GA0o5Sj-yFgjBhBmJ-BCSGEFZxhdv6vvwTTGPcoB8e0qeoJ-Fi7Lx2T3YpkvYPewLTTcO2SDkYoDZfGaJUiFK6Dq-Az6bbwSaudcDb2R_5ZOD_44McI54ext07A153WKV6DCyMOUU9_6xV4Xy3fFo_F5uVhvZhvCkU4TQUnpC5RKatas1I2rCMlZ5zJrsGII9l02ChW1qqksjqaM1wRWUuFZSW5RoZegdvT3iH4zzGbafd-DC6fbElTUoyqumSZmp2orTjo1jrjUxAqZ6d7q7zTxub5nFUcc1RjnAV3J4HKtmPQph2C7UX4bjFqj_9u__5NfwA9F3FO</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>He, Song</creator><creator>Liu, Heyun</creator><creator>Zhang, Yuan</creator><creator>Liu, Haili</creator><creator>Chen, Wang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230701</creationdate><title>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</title><author>He, Song ; Liu, Heyun ; Zhang, Yuan ; Liu, Haili ; Chen, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9226404b56e74b87d249797bd81090b8d1fc746c43b57201f9c2b6bc1b5b9e0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air conditioning</topic><topic>Air temperature</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Anodizing</topic><topic>Comparative analysis</topic><topic>Contact angle</topic><topic>Diameters</topic><topic>Energy consumption</topic><topic>Equipment and supplies</topic><topic>Fins</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Frost</topic><topic>Green buildings</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Heating</topic><topic>Humidity</topic><topic>Hydrophobic surfaces</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Low temperature environments</topic><topic>Metal sheets</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Relative humidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Song</creatorcontrib><creatorcontrib>Liu, Heyun</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Liu, Haili</creatorcontrib><creatorcontrib>Chen, Wang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Song</au><au>Liu, Heyun</au><au>Zhang, Yuan</au><au>Liu, Haili</au><au>Chen, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets</atitle><jtitle>Processes</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>7</issue><spage>2019</spage><pages>2019-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Nanoporous alumina sheets can inhibit the growth of the frost layer in a low-temperature environment, which has been widely used in air-conditioning heat exchangers. In this study, nanoporous alumina sheets with pore diameters of 30 nm, 100 nm, 200 nm, 300 nm, and 400 nm were prepared by using the anodic oxidation method with the conventional polished aluminum sheet as the reference. A comprehensive and in-depth analysis of the frosting mechanism has been proposed based on the contact angle, specific surface area, and fractal dimension. It was found that compared with the polished aluminum sheet, the nanoporous alumina sheets had good anti-frost properties. Due to its special interface effects, the porous alumina sheet with a 100 nm pore diameter had strong anti-frost performance under low temperatures and high humidity. In an environment with low surface temperature and high relative humidity, it is recommended to use hydrophilic aluminum fins with large specific areas and small fractal dimensions for the heat exchange fins of air source heat pump air conditioning systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11072019</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-07, Vol.11 (7), p.2019
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2843105647
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Air conditioning
Air temperature
Alumina
Aluminum
Aluminum oxide
Anodizing
Comparative analysis
Contact angle
Diameters
Energy consumption
Equipment and supplies
Fins
Fractal geometry
Fractals
Frost
Green buildings
Heat
Heat exchange
Heat exchangers
Heat pumps
Heating
Humidity
Hydrophobic surfaces
Investigations
Low temperature
Low temperature environments
Metal sheets
Morphology
Nanoparticles
Oxidation
Relative humidity
title Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20Interface%20Effects%20and%20Frosting%20Mechanism%20of%20Nanoporous%20Alumina%20Sheets&rft.jtitle=Processes&rft.au=He,%20Song&rft.date=2023-07-01&rft.volume=11&rft.issue=7&rft.spage=2019&rft.pages=2019-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11072019&rft_dat=%3Cgale_proqu%3EA759190611%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843105647&rft_id=info:pmid/&rft_galeid=A759190611&rfr_iscdi=true