Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats
The waste fish oil obtained from Baltic sprat waste in the production of canned sprats was studied as a sole carbon substrate for PHA synthesis by the wild-type strain Cupriavidus necator B-10646. Sprat oil contained a set of fatty acids with a chain length from C14 to C24, saturation factor 0.63, a...
Gespeichert in:
Veröffentlicht in: | Processes 2023-07, Vol.11 (7), p.2113 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 2113 |
container_title | Processes |
container_volume | 11 |
creator | Zhila, Natalia O. Sapozhnikova, Kristina Yu Kiselev, Evgeniy G. Shishatskaya, Ekaterina I. Volova, Tatiana G. |
description | The waste fish oil obtained from Baltic sprat waste in the production of canned sprats was studied as a sole carbon substrate for PHA synthesis by the wild-type strain Cupriavidus necator B-10646. Sprat oil contained a set of fatty acids with a chain length from C14 to C24, saturation factor 0.63, and provided bacterial growth and PHA synthesis. Bacteria metabolized fatty acids unevenly utilizing polyenoic acids and not using monoenoic and saturated acids. The bacterial biomass yield and the intracellular polymer concentration were 6.5 ± 0.5 g/L and 65 ± 5% by fed-batch culture in flasks. The synthesized PHAs were three-component copolymers with a predominance (97–98 mol.%) of 3-hydroxybutyrate monomers and small inclusions of 3-hydroxyvalerate and 3-hydroxyhexanoate; the ratio of monomers changed slightly depending on the sprat oil concentration. The series of samples had a temperature (Tmelt) of 158–165 °C, a molecular weight (Mw) of 540–760 kDa, and a degree of crystallinity (Cx) of 66–72%. For the first time, the waste fish oil from the production of sprats studied as a carbon substrate is a promising, affordable, and renewable substrate for PHA biosynthesis. |
doi_str_mv | 10.3390/pr11072113 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2843105035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759190757</galeid><sourcerecordid>A759190757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5ab9c801e1a4fd20fc7eb30d90c2773dcdccfba1d9b9f78fa1957fb9daa3c8dc3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWLQXf0HAm9CabLpmcyzFqlBooYrHZTYfbuo2WZMU3H9vSgWdOcww8z7vwCB0Q8mUMUHu-0Ap4QWl7AyNiqLgE8EpP__XX6JxjDuSQ1BWlQ8j1G4Hl1odbcTgFN4E3-uQrI7YG7zx3dAOKvjvAbpPcB7SceHwO8Sk8dLGFq9th03we5xdjrg6yGSzJOMLcE4rvO0DpHiNLgx0UY9_6xV6Wz6-Lp4nq_XTy2K-mkjGZmlSQiNkRaimMDOqIEZy3TCiBJEF50xJJaVpgCrRCMMrA1SU3DRCATBZKcmu0O3Jtw_-66Bjqnf-EFw-WRfVjFFSElZm1fSk-oBO19YZnwLInErvrfROG5vnc14KKggveQbuToAMPsagTd0Hu4cw1JTUx-_Xf99nP55ReRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843105035</pqid></control><display><type>article</type><title>Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Zhila, Natalia O. ; Sapozhnikova, Kristina Yu ; Kiselev, Evgeniy G. ; Shishatskaya, Ekaterina I. ; Volova, Tatiana G.</creator><creatorcontrib>Zhila, Natalia O. ; Sapozhnikova, Kristina Yu ; Kiselev, Evgeniy G. ; Shishatskaya, Ekaterina I. ; Volova, Tatiana G.</creatorcontrib><description>The waste fish oil obtained from Baltic sprat waste in the production of canned sprats was studied as a sole carbon substrate for PHA synthesis by the wild-type strain Cupriavidus necator B-10646. Sprat oil contained a set of fatty acids with a chain length from C14 to C24, saturation factor 0.63, and provided bacterial growth and PHA synthesis. Bacteria metabolized fatty acids unevenly utilizing polyenoic acids and not using monoenoic and saturated acids. The bacterial biomass yield and the intracellular polymer concentration were 6.5 ± 0.5 g/L and 65 ± 5% by fed-batch culture in flasks. The synthesized PHAs were three-component copolymers with a predominance (97–98 mol.%) of 3-hydroxybutyrate monomers and small inclusions of 3-hydroxyvalerate and 3-hydroxyhexanoate; the ratio of monomers changed slightly depending on the sprat oil concentration. The series of samples had a temperature (Tmelt) of 158–165 °C, a molecular weight (Mw) of 540–760 kDa, and a degree of crystallinity (Cx) of 66–72%. For the first time, the waste fish oil from the production of sprats studied as a carbon substrate is a promising, affordable, and renewable substrate for PHA biosynthesis.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11072113</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Bacteria ; Batch culture ; Biosynthesis ; Biotechnology ; Carbon ; Carbon sources ; Cell growth ; Copolymers ; Cupriavidus necator ; Degree of crystallinity ; Environmental impact ; Fatty acids ; Fed-batch culture ; Fish oils ; Flasks ; Inclusions ; Instrument industry ; Molecular weight ; Monomers ; Nitrogen ; Oil wastes ; Oils & fats ; Polyenoic acids ; Polyhydroxyalkanoates ; Proteins ; R&D ; Raw materials ; Research & development ; Sprattus sprattus ; Substrates ; Trace elements</subject><ispartof>Processes, 2023-07, Vol.11 (7), p.2113</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5ab9c801e1a4fd20fc7eb30d90c2773dcdccfba1d9b9f78fa1957fb9daa3c8dc3</citedby><cites>FETCH-LOGICAL-c334t-5ab9c801e1a4fd20fc7eb30d90c2773dcdccfba1d9b9f78fa1957fb9daa3c8dc3</cites><orcidid>0000-0001-6054-4200 ; 0000-0003-4472-7087 ; 0000-0001-7967-243X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhila, Natalia O.</creatorcontrib><creatorcontrib>Sapozhnikova, Kristina Yu</creatorcontrib><creatorcontrib>Kiselev, Evgeniy G.</creatorcontrib><creatorcontrib>Shishatskaya, Ekaterina I.</creatorcontrib><creatorcontrib>Volova, Tatiana G.</creatorcontrib><title>Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats</title><title>Processes</title><description>The waste fish oil obtained from Baltic sprat waste in the production of canned sprats was studied as a sole carbon substrate for PHA synthesis by the wild-type strain Cupriavidus necator B-10646. Sprat oil contained a set of fatty acids with a chain length from C14 to C24, saturation factor 0.63, and provided bacterial growth and PHA synthesis. Bacteria metabolized fatty acids unevenly utilizing polyenoic acids and not using monoenoic and saturated acids. The bacterial biomass yield and the intracellular polymer concentration were 6.5 ± 0.5 g/L and 65 ± 5% by fed-batch culture in flasks. The synthesized PHAs were three-component copolymers with a predominance (97–98 mol.%) of 3-hydroxybutyrate monomers and small inclusions of 3-hydroxyvalerate and 3-hydroxyhexanoate; the ratio of monomers changed slightly depending on the sprat oil concentration. The series of samples had a temperature (Tmelt) of 158–165 °C, a molecular weight (Mw) of 540–760 kDa, and a degree of crystallinity (Cx) of 66–72%. For the first time, the waste fish oil from the production of sprats studied as a carbon substrate is a promising, affordable, and renewable substrate for PHA biosynthesis.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Batch culture</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Carbon sources</subject><subject>Cell growth</subject><subject>Copolymers</subject><subject>Cupriavidus necator</subject><subject>Degree of crystallinity</subject><subject>Environmental impact</subject><subject>Fatty acids</subject><subject>Fed-batch culture</subject><subject>Fish oils</subject><subject>Flasks</subject><subject>Inclusions</subject><subject>Instrument industry</subject><subject>Molecular weight</subject><subject>Monomers</subject><subject>Nitrogen</subject><subject>Oil wastes</subject><subject>Oils & fats</subject><subject>Polyenoic acids</subject><subject>Polyhydroxyalkanoates</subject><subject>Proteins</subject><subject>R&D</subject><subject>Raw materials</subject><subject>Research & development</subject><subject>Sprattus sprattus</subject><subject>Substrates</subject><subject>Trace elements</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1LAzEQhoMoWLQXf0HAm9CabLpmcyzFqlBooYrHZTYfbuo2WZMU3H9vSgWdOcww8z7vwCB0Q8mUMUHu-0Ap4QWl7AyNiqLgE8EpP__XX6JxjDuSQ1BWlQ8j1G4Hl1odbcTgFN4E3-uQrI7YG7zx3dAOKvjvAbpPcB7SceHwO8Sk8dLGFq9th03we5xdjrg6yGSzJOMLcE4rvO0DpHiNLgx0UY9_6xV6Wz6-Lp4nq_XTy2K-mkjGZmlSQiNkRaimMDOqIEZy3TCiBJEF50xJJaVpgCrRCMMrA1SU3DRCATBZKcmu0O3Jtw_-66Bjqnf-EFw-WRfVjFFSElZm1fSk-oBO19YZnwLInErvrfROG5vnc14KKggveQbuToAMPsagTd0Hu4cw1JTUx-_Xf99nP55ReRw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhila, Natalia O.</creator><creator>Sapozhnikova, Kristina Yu</creator><creator>Kiselev, Evgeniy G.</creator><creator>Shishatskaya, Ekaterina I.</creator><creator>Volova, Tatiana G.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6054-4200</orcidid><orcidid>https://orcid.org/0000-0003-4472-7087</orcidid><orcidid>https://orcid.org/0000-0001-7967-243X</orcidid></search><sort><creationdate>20230701</creationdate><title>Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats</title><author>Zhila, Natalia O. ; Sapozhnikova, Kristina Yu ; Kiselev, Evgeniy G. ; Shishatskaya, Ekaterina I. ; Volova, Tatiana G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5ab9c801e1a4fd20fc7eb30d90c2773dcdccfba1d9b9f78fa1957fb9daa3c8dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Batch culture</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Carbon sources</topic><topic>Cell growth</topic><topic>Copolymers</topic><topic>Cupriavidus necator</topic><topic>Degree of crystallinity</topic><topic>Environmental impact</topic><topic>Fatty acids</topic><topic>Fed-batch culture</topic><topic>Fish oils</topic><topic>Flasks</topic><topic>Inclusions</topic><topic>Instrument industry</topic><topic>Molecular weight</topic><topic>Monomers</topic><topic>Nitrogen</topic><topic>Oil wastes</topic><topic>Oils & fats</topic><topic>Polyenoic acids</topic><topic>Polyhydroxyalkanoates</topic><topic>Proteins</topic><topic>R&D</topic><topic>Raw materials</topic><topic>Research & development</topic><topic>Sprattus sprattus</topic><topic>Substrates</topic><topic>Trace elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhila, Natalia O.</creatorcontrib><creatorcontrib>Sapozhnikova, Kristina Yu</creatorcontrib><creatorcontrib>Kiselev, Evgeniy G.</creatorcontrib><creatorcontrib>Shishatskaya, Ekaterina I.</creatorcontrib><creatorcontrib>Volova, Tatiana G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhila, Natalia O.</au><au>Sapozhnikova, Kristina Yu</au><au>Kiselev, Evgeniy G.</au><au>Shishatskaya, Ekaterina I.</au><au>Volova, Tatiana G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats</atitle><jtitle>Processes</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>11</volume><issue>7</issue><spage>2113</spage><pages>2113-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>The waste fish oil obtained from Baltic sprat waste in the production of canned sprats was studied as a sole carbon substrate for PHA synthesis by the wild-type strain Cupriavidus necator B-10646. Sprat oil contained a set of fatty acids with a chain length from C14 to C24, saturation factor 0.63, and provided bacterial growth and PHA synthesis. Bacteria metabolized fatty acids unevenly utilizing polyenoic acids and not using monoenoic and saturated acids. The bacterial biomass yield and the intracellular polymer concentration were 6.5 ± 0.5 g/L and 65 ± 5% by fed-batch culture in flasks. The synthesized PHAs were three-component copolymers with a predominance (97–98 mol.%) of 3-hydroxybutyrate monomers and small inclusions of 3-hydroxyvalerate and 3-hydroxyhexanoate; the ratio of monomers changed slightly depending on the sprat oil concentration. The series of samples had a temperature (Tmelt) of 158–165 °C, a molecular weight (Mw) of 540–760 kDa, and a degree of crystallinity (Cx) of 66–72%. For the first time, the waste fish oil from the production of sprats studied as a carbon substrate is a promising, affordable, and renewable substrate for PHA biosynthesis.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11072113</doi><orcidid>https://orcid.org/0000-0001-6054-4200</orcidid><orcidid>https://orcid.org/0000-0003-4472-7087</orcidid><orcidid>https://orcid.org/0000-0001-7967-243X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-07, Vol.11 (7), p.2113 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2843105035 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Free E-Journal (出版社公開部分のみ) |
subjects | Analysis Bacteria Batch culture Biosynthesis Biotechnology Carbon Carbon sources Cell growth Copolymers Cupriavidus necator Degree of crystallinity Environmental impact Fatty acids Fed-batch culture Fish oils Flasks Inclusions Instrument industry Molecular weight Monomers Nitrogen Oil wastes Oils & fats Polyenoic acids Polyhydroxyalkanoates Proteins R&D Raw materials Research & development Sprattus sprattus Substrates Trace elements |
title | Synthesis and Properties of Polyhydroxyalkanoates on Waste Fish Oil from the Production of Canned Sprats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Properties%20of%20Polyhydroxyalkanoates%20on%20Waste%20Fish%20Oil%20from%20the%20Production%20of%20Canned%20Sprats&rft.jtitle=Processes&rft.au=Zhila,%20Natalia%20O.&rft.date=2023-07-01&rft.volume=11&rft.issue=7&rft.spage=2113&rft.pages=2113-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11072113&rft_dat=%3Cgale_proqu%3EA759190757%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843105035&rft_id=info:pmid/&rft_galeid=A759190757&rfr_iscdi=true |